首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the regiospecific synthesis of 3-substituted 2-aroylpyrroles is described. These pyrroles, which are structurally related to the naturally occurring antibiotic pyoluteorin, are prepared by a Friedel-Crafts aroylation of 4-substituted pyrrole-3-carboxylic acid esters with 2,6-dimethoxybenzoyl chloride. The carboalkoxy group is then removed by hydrolysis and decarboxylation to produce isomerically pure 3-substituted-2-(2′,6′-dimethoxybenzoyl)pyrroles ( 5 and 13 ). Conversion of these pyrroles into pyoluteorin-like compounds led to some unexpected products which arise from facile cleavage of the dihydroxybenzoyl portion of the molecules during chlorination.  相似文献   

2.
In the search for organic ferromagnets polymers with a conjugated backbone and pendant persistent radicals are one route of interest. The synthesis of poly[4-(4-ethynylphenyl)-2′,4′,6′-trinitro-2,6-diphenyldiphenylamine] (p-3) and poly[4-(3-ethynylphenyl)-2′,4′,6′-trinitro-2,6-diphenyldiphenylamine] (m-3) as precursors of polyradicals are described. A dinuclear rhodium cyclooctadiene chloride complex as polymerization catalyst was used to yield polymers with molecular weights (gel-permeation chromatography) of 100 000 for m-3 and 210 000 for p-3 .  相似文献   

3.
3-Aroyl-1H-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with N,N′-dihydroxycyclohexane-1,2-diamine to give 3-aroyl-1′,4,4′-trihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrole-2,2′-quinoxaline]-3′,5(1H,4′H)-diones which underwent rearrangement into 1′-aroyloxy-4,4′-dihydroxy-1-(2-hydroxyphenyl)-4a′,5′,6′,7′,8′,8a′-hexahydro-1′H-spiro[pyrrolidine-2,2′-quinoxaline]3′,4,5(4′H)-triones via [1,4]-migration of the aroyl group. The product structure was proved by X-ray analysis.  相似文献   

4.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

5.
6.
A novel and efficient synthesis of N-substituted dipyrrolo[1,2-a:2′,1′-c]pyrazine derivatives has been developed. The synthetic strategy relies on the synthesis of 4′,5′-dihydro-1H,3′H-2,2′-bipyrrole, followed by the reaction with propargyl bromide. Various substituents were introduced to the alkyne functionality using the Sonogashira coupling reaction. Aromatization of the dihydropyrrole ring followed by an intramolecular cyclization reaction between the alkyne functionality and the pyrrole nitrogen atom was catalyzed by Pd/C at high temperature to furnish the desired dipyrrolo-pyrazine skeleton.  相似文献   

7.
A facile synthesis of 6′β-(indol-3″-yl)-9′- methyl-5′,6′,-6′αβ,7′,8′,10′ αβ-hexahydrospiro[cyclopropane-1,7′-indeno[2,1-b]indole] (2), an analogue of yuehchukene (1), is described.  相似文献   

8.
Bromination of endo-ethenotetrahydrothebaine derivatives having a pyrrolidine ring fused at the C7-C8 bond, namely 1′-substituted 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-diones, 1′-aryl-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinans, and 4,5α-epoxy-6α,14-etheno-2′α-hydroxy-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morpphinan-5′-one, with molecular bromine in formic acid smoothly afforded the corresponding 1-bromo derivatives. Iodination of 4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-4,5α-epoxy-6α,14-etheno-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]-morphinan-2′,5′-dione with iodine(I) chloride gave 4,5α-epoxy-6α,14-etheno-1-iodo-3,6-dimethoxy-17-methyl-1′-phenyl-2′,5′,7β,8β-tetrahydro-1′H-14α-pyrrolo[3′,4′:7,8]morphinan-2′,5′-dione. The resulting 1-halo derivatives were brought into the Heck reaction with acrylic acid esters to obtain 1-[(E)-2-(alkoxycarbonyl)ethenyl]-substituted compounds. Demethylation of the 6-methoxy group in 1-bromo-endo-ethenotetrahydrothebaines was accomplished using boron(III) bromide in chloroform.  相似文献   

9.
An efficient method has been developed for the synthesis of 7′-arylspiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocanes)} by the ring transformation reaction of spiro{adamantane-[2,3’]-(1′,2′,4′,5′,7′-pentaoxacane)} with arylamines in the presence of Sm(NO3)3·6H2O as the catalyst. NMR signals of the synthesized compounds were assigned considering the conformation dynamics of the tetraoxazocane ring with two rigid peroxide bonds. The structures of some of the compounds were studied by X-ray diffraction. The thermal stability of single crystal was determined by DSC method. Compounds 7′-(2-methylphenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} and 7′-(4-fluorophenyl)spiro{adamantane-[2,3′]-(1′,2′,4′,5′,7′-tetraoxazocane)} exhibited cytotoxicity towards cancer cells.  相似文献   

10.
Here we demonstrate the synthesis of telechelics with different spacer units and different numbers of metal-complexing units, like α-methoxy-ω-(2,2′:6′,2″-terpyrid-4′-yl)-poly(ethylenoxide)78 ( 1 ), bis(2,2′:6′,2″-terpyrid-4′-yl) di(ethylene glycol) ( 2 ), bis(2,2′:6′,2″-terpyrid-4′-yl)-poly(ethylene oxide)180 ( 3 ) and tris[(2,2′:6′,2″-terpyrid-4′-yl)-oligo (ethylenoxy-)3.33]glycerin ( 4 ) utilizing 4-chloro-2,2′:6′,2″-terpyridine. The complexation behaviour of a variety of metal-salts towards the telechelics was studied and different supramolecular architectures were investigated, such as symmetric polymeric complexes and linear coordination polymers. Furthermore, attempts have been undertaken to prepare metallo-supramolecular cross-linked systems.  相似文献   

11.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

12.
A new trimer from the reaction of ageratochromene [1] (6,7‐dimethoxy‐2,2‐dimethyl‐1‐benzopyran) with anhydrous aluminum chloride was shown to be 3,4‐dihydro‐6,7‐dimethoxy‐2,2‐dimethyl‐3‐(6′,7′‐dimethoxy‐2′,2′‐dimethyl‐2H‐1‐benzopyran‐4′‐yl)‐4‐(3′,4′‐dihydro‐6′, 7′‐dimethoxy‐2′,2′‐dimethyl‐2H‐1‐benzopyran‐3′‐yl)‐ 2H‐1‐benzopyran. Its structure was confirmed by NMR (1H, 13C, DEPT‐135. COSY, HMBC, HSQC, TOCSY and NOESY), IR, mass spectra and elemental analysis. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A convenient general method for the synthesis of a new heterocycle, spiro[azetidine-2,4′(1′H)-iso-quinoline-1′,3′,4(2′H)-trione] is described. The key intermediate 2 was prepared by direct halogenation of position-4 of acid 3 with thionyl chloride, and subsequent treatment of the generated 4-Cl, 4-acetyl chloride 11 with a THF/NH3 solution at low temperature.  相似文献   

14.
以D-葡萄糖为原料,经碳苷化反应,酰化反应和脯氨酸-DIPEA催化的aldol反应制得2个碳苷糖[1-(4'-羟基苯基)-4-C-β-四乙酰基葡萄糖基-3-烯-2-酮(5a)和1-(3-羟基苯基)-4-C-β-四乙酰基葡萄糖基-3-烯-2-酮(5b)];5与琥珀酸维生素D2经Steglich酯化反应合成了2个新型碳苷糖类维生素D2衍生物,其结构经1H NMR,13C NMR和HR-ESI-MS表征。  相似文献   

15.
3-Aroyl-1H-pyrrolo[2,1-c][1,4]benzoxazine-1,2,4-triones reacted with substituted 1,3,3-trimethyl-3,4-dihydroisoquinolines to give the corresponding 3-aroyl-4-hydroxy-1-(2-hydroxyphenyl)-5′,5′-dimethyl-5′,6′-dihydro-1H-spiro[pyrrole-2,2′-pyrrolo[2,1-a]isoquinoline]-3′,5-diones. 7′,8′-Benzo derivatives of the latter may be regarded as 13-azagonane analogs having a spiro-fused pyrrole ring at C16.  相似文献   

16.
A total synthesis of optically pure (+)-catechin pentaacetate has been established using the (-)-chalcon epoxide (100% ee) derived from 3,4,2′,4′,6′-pentakis(methoxymethoxy)chalcon as the starting material. The optical purity of the product is confirmed by 1H nmr analysis in the presence of a shift reagent.  相似文献   

17.
The synthesis of the guanine derivative (±)-2-amino-1,9-dihydro-9-[(1′α,2′β,3′β,4′α)-(2′,3′,4′-trihydroxy-1′-cyclopentyl]-6H-purin-6-one ( 2 ) is described. This compound is viewed as the carbocyclic ribofuranoside guanine nucleoside analogue lacking the 5′-methylene.  相似文献   

18.
The regiospecific reaction of 5-vinyl-3′,5′-di-O-acetyl-2′-deoxyuridine ( 2 ) with HOX (X = Cl, Br, I) yielded the corresponding 5-(1-hydroxy-2-haloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines 3a-c . Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with DAST (Et2NSF3) in methylene chloride at -40° gave the respective 5-(1-fluoro-2-chloroethyl)- ( 6a , 74%) and 5-(1-fluoro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6b , 65%). In contrast, 5-(1-fluoro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6e ) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5-(1-methoxy-2-iodoethyl)- ( 6c ), 5-(1-ethoxy-2-iodoethyl)- ( 6d ) and 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with thionyl chloride yielded the respective 5-(1,2-dichloroethyl)- ( 6f , 85%) and 5-(1-chloro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6g , 50%), whereas a similar reaction employing the 5-(1-hydroxy-2-iodoethyl)- compound 3c afforded 5-(1-methoxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6c ), possibly via the unstable 5-(1-chloro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine intermediate 6h . The 5-(1-bromo-2-chloroethyl)- ( 6i ) and 5-(1,2-dibromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6j ) could not be isolated due to their facile conversion to the corresponding 5-(1-ethoxy-2-chloroethyl)- ( 6k ) and 5-(1-ethoxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 61 ). Reaction of 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with methanolic ammonia, to remove the 3′,5′-di-O-acetyl groups, gave 2,3-dihydro-3-hydroxy-5-(2′-deoxy-β-D-ribofuranosyl)-furano[2,3-d]pyrimidine-6(5H)-one ( 8 ). In contrast, a similar reaction of 5-(1-fluoro-2-chloroethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6a ) yielded (E)-5-(2-chlorovinyl)-2′-deoxyuridine ( 1b , 23%) and 5-(2′-deoxy-β-D-ribofuranosyl)furano[2,3-d]pyrimidin-6(5H)-one ( 9 , 13%). The mechanisms of the substitution and elimination reactions observed for these 5-(1,2-dihaloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines are described.  相似文献   

19.
Ethyl acetoacetate was acylated with 3,4,5-trifluoro-2,6-dimethoxybenzoyl chloride to give, for the first time, ethyl 3-oxo-2-(3,4,5-trifluoro-2,6-dimethoxybenzoyl)butyrate and its copper chelate. The title compound was used for the synthesis of 6,7,8-trifluoro-5-hydroxy-2-methylchromone, 1-(3,4,5-trifluoro-2,6-dimethoxyphenyl)butane-1,3-dione, and its copper chelate.  相似文献   

20.
The synthesis of 5-[6′-deoxy-(1′,2′:3′,4′-di-O-isopropylidene-α-D-galactopyranos-6′-yl)]tetrazole and its reaction with acetic anhydride and 1,2:3,4-di-O-isopropylidene-6-O-(4-toluenesulfonyl)-α-D-galactopyranose are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号