首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that, if t is an integer ≥3 and not equal to 7 or 8, then there is a unique maximal graph having the path Pt as a star complement for the eigenvalue ?2. The maximal graph is the line graph of Km,m if t = 2m?1, and of Km,m+1 if t = 2m. This result yields a characterization of L(G ) when G is a (t + 1)‐vertex bipartite graph with a Hamiltonian path. The graphs with star complement PrPs or PrCs for ?2 are also determined. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 137–149, 2003  相似文献   

2.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

3.
A graph G with q edges is defined to be conservative if the edges of G can be oriented and distinctly numbered with the integers 1, 2,…, q so that at each vertex the sum of the numbers on the inwardly directed edges equals that on the outwardly directed edges. Several classes of graphs, including Kn, for n ≥4, and K2n, 2m, for n, m ≥ 2, are shown to be conservative. It is proven that the dual of a planar graceful graph is conservative, and that the converse of this result is false.  相似文献   

4.
Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G=(V,E) with a given independent set SV (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain partitioned probe graphs. The first one describes chain partitioned probe graphs by six forbidden subgraphs. The second one characterizes these graphs via a certain “enhanced graph”: G is a chain partitioned probe graph if and only if the enhanced graph G * is a chain graph. This is analogous to a result on interval (respectively, chordal, threshold, trivially perfect) partitioned probe graphs, and gives an O(m 2)-time recognition algorithm for chain partitioned probe graphs.  相似文献   

5.
A graph is intrinsically knotted if every embedding contains a nontrivially knotted cycle. It is known that intrinsically knotted graphs have at least 21 edges and that the KS graphs, K7 and the 13 graphs obtained from K7 by moves, are the only minor minimal intrinsically knotted graphs with 21 edges [1, 9, 11, 12]. This set includes exactly one bipartite graph, the Heawood graph. In this article we classify the intrinsically knotted bipartite graphs with at most 22 edges. Previously known examples of intrinsically knotted graphs of size 22 were those with KS graph minor and the 168 graphs in the K3, 3, 1, 1 and families. Among these, the only bipartite example with no Heawood subgraph is Cousin 110 of the family. We show that, in fact, this is a complete listing. That is, there are exactly two graphs of size at most 22 that are minor minimal bipartite intrinsically knotted: the Heawood graph and Cousin 110.  相似文献   

6.
A Gallai‐coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Gallai‐colorings occur in various contexts such as the theory of partially ordered sets (in Gallai's original paper) or information theory. Gallai‐colorings extend 2‐colorings of the edges of complete graphs. They actually turn out to be close to 2‐colorings—without being trivial extensions. Here, we give a method to extend some results on 2‐colorings to Gallai‐colorings, among them known and new, easy and difficult results. The method works for Gallai‐extendible families that include, for example, double stars and graphs of diameter at most d for 2?d, or complete bipartite graphs. It follows that every Gallai‐colored Kn contains a monochromatic double star with at least 3n+ 1/4 vertices, a monochromatic complete bipartite graph on at least n/2 vertices, monochromatic subgraphs of diameter two with at least 3n/4 vertices, etc. The generalizations are not automatic though, for instance, a Gallai‐colored complete graph does not necessarily contain a monochromatic star on n/2 vertices. It turns out that the extension is possible for graph classes closed under a simple operation called equalization. We also investigate Ramsey numbers of graphs in Gallai‐colorings with a given number of colors. For any graph H let RG(r, H) be the minimum m such that in every Gallai‐coloring of Km with r colors, there is a monochromatic copy of H. We show that for fixed H, RG (r, H) is exponential in r if H is not bipartite; linear in r if H is bipartite but not a star; constant (does not depend on r) if H is a star (and we determine its value). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 233–243, 2010  相似文献   

7.
The main result of this paper completely settles Bermond's conjecture for bipartite graphs of odd degree by proving that if G is a bipartite (2k + 1)-regular graph that is Hamilton decomposable, then the line graph, L(G), of G is also Hamilton decomposable. A similar result is obtained for 5-regular graphs, thus providing further evidence to support Bermond's conjecture. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Let Gn,m,k denote the space of simple graphs with n vertices, m edges, and minimum degree at least k, each graph G being equiprobable. Let G have property Ak, if G contains ⌊(k − 1)/2⌋ edge disjoint Hamilton cycles, and, if k is even, a further edge disjoint matching of size ⌊n/2⌋. We prove that, for k ≥ 3, there is a constant Ck such that if 2mCkn then Ak occurs in Gn,m,k with probability tending to 1 as n → ∞. © 2000 John Wiley & Sons, Inc. J. Graph Theory 34: 42–59, 2000  相似文献   

9.
In this paper, we study the largest Laplacian spectral radius of the bipartite graphs with n vertices and k cut edges and the bicyclic bipartite graphs, respectively. Identifying the center of a star K1,k and one vertex of degree n of Km,n, we denote by the resulting graph. We show that the graph (1?k?n-4) is the unique graph with the largest Laplacian spectral radius among the bipartite graphs with n vertices and k cut edges, and (n?7) is the unique graph with the largest Laplacian spectral radius among all the bicyclic bipartite graphs.  相似文献   

10.
It is shown that a connected graph G spans an eulerian graph if and only if G is not spanned by an odd complete bigraph K(2m + 1, 2n + 1). A disconnected graph spans an eulerian graph if and only if it is not the union of the trivial graph with a complete graph of odd order. Exact formulas are obtained for the number of lines which must be added to such graphs in order to get eulerian graphs.  相似文献   

11.
The main result of this article is a classification of distance-transitive Cayley graphs on dihedral groups. We show that a Cayley graph X on a dihedral group is distance-transitive if and only if X is isomorphic to one of the following graphs: the complete graph K 2n ; a complete multipartite graph K t×m with t anticliques of size m, where t m is even; the complete bipartite graph without 1-factor K n,n nK 2; the cycle C 2n ; the incidence or the non-incidence graph of the projective geometry PG d-1(d,q), d ≥ 2; the incidence or the non-incidence graph of a symmetric design on 11 vertices.  相似文献   

12.
A graph is chromatically unique if it is uniquely determined by its chromatic polynomial. Let G be a chromatically unique graph and let Km denote the complete graph on m vertices. This paper is mainly concerned with the chromaticity of Km + G where + denotes the join of graphs. Also, it is shown that a large family of connected vertextransitive graphs that are not chromatically unique can be obtained by taking the join of some vertex-transitive graphs. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
14.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

15.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

16.
For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s and t such that 2 ≤ st, 0 ≤ msnt, and m + n ≤ 2s + t − 1, we prove that if G has at least mn − (2(ms) + nt) edges then it contains a subdivision of the complete bipartite K (s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn − (2(ms) + nt + 1) edges for this topological Turan type problem.  相似文献   

17.
A graph is called H-free if it contains no copy of H. Denote by f n (H) the number of (labeled) H-free graphs on n vertices. Erdős conjectured that f n (H) ≤ 2(1+o(1))ex(n,H). This was first shown to be true for cliques; then, Erdős, Frankl, and R?dl proved it for all graphs H with χ(H)≥3. For most bipartite H, the question is still wide open, and even the correct order of magnitude of log2 f n (H) is not known. We prove that f n (K m,m ) ≤ 2 O (n 2−1/m ) for every m, extending the result of Kleitman and Winston and answering a question of Erdős. This bound is asymptotically sharp for m∈{2,3}, and possibly for all other values of m, for which the order of ex(n,K m,m ) is conjectured to be Θ(n 2−1/m ). Our method also yields a bound on the number of K m,m -free graphs with fixed order and size, extending the result of Füredi. Using this bound, we prove a relaxed version of a conjecture due to Haxell, Kohayakawa, and Łuczak and show that almost all K 3,3-free graphs of order n have more than 1/20·ex(n,K 3,3) edges.  相似文献   

18.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

19.
It is proved that the maximal number of edges in a graph with n ≧ 8 vertices that is not contractible to K8 is 6n ? 21, unless 5 divides n, and the only graphs with n = 5m vertices and more than 6n ? 21 edges that are not contractible to K8 are the K5(2)-cockades that have exactly 6n ? 20 edges.  相似文献   

20.
Graham and Pollak [3] proved that n ?1 is the minimum number of edge-disjoint complete bipartite subgraphs into which the edges of Kn can be decomposed. Using a linear algebraic technique, Tverberg [2] gives a different proof of that result. We apply his technique to show that for “almost all n,” ? (n + m ?3)/(m ?1) ? is the minimum number of edge-disjoint complete m-partite subgraphs in a decomposition of Kn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号