首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternating copolymerizations of methyl methacrylate with styrene in the presence of boron trichloride at 0°C in 1,2-dichloroethane were carried out by using benzoyl peroxide as an initiator. Conversion increased proportionally with polymerization time, whereas the degree of polymerization was constant irrespective of time. The rate depended linearly on the square root of the concentration of benzoyl peroxide. The equilibrium constants for the formation of the ternary molecular complex composed of methyl methacrylate, styrene, and boron trichloride in 1,2-dichloroethane at ?20, ?10, and +4°C were determined by 1H-NMR spectroscopy. The concentrations of the ternary molecular complex in the polymerization mixtures were evaluated from the equilibrium constant of the formation. The rate of the alternating copolymerization was proportional to the first order of the concentration of the ternary molecular complex. The distribution of methyl methacrylate-centered triads in the alternating copolymer was different from that of styrene-centered triads. These results can be explained by a mechanism involving the homopolymerization of a ternary molecular complex.  相似文献   

2.
Triad cotacticities of alternating copolymers of methyl methacrylate with styrene prepared in the presence of zinc chloride, ethylaluminium sesquichloride, and ethylboron dichloride are investigated from the mechanistic point of view by means of 1H- and 13C-NMR. The cotacticities from 1H-NMR spectra are obtained accurately by using α-d-styrene in the place of styrene and by measuring the spectra on the copolymer in o-dichlorobenzene at 170°C. The relative intensities of three peaks of the splitting signal for the methoxy protons in the nonalternating copolymers obtained by the use of benzoyl peroxide in the absence of metal halides agree well with the cotacticity distribution calculated theoretically by the Lewis-Mayo mechanism with the stereoregulation following Bernoullian statistics. The splitting signals in the 1H- and 13C-NMR spectra of the alternating copolymers prepared in the presence of metal halides cannot be explained by the same mechanism. The relative intensities of three peaks of the splitting signals for the methoxy protons and for the carbonyl carbon in the methyl methacrylate unit (the contents of cotactic triads centered by the methyl methacrylate unit) are not equal to those for the aromatic C1 carbon in the styrene unit (the contents of cotactic triads centered by styrene unit). The value of f2Y - 4fxfz is not equal to zero, where fx, fy, and fz are the cosyndiotactic, coheterotactic, and coisotactic triad contents, respectively, in the alternating copolymer. Copolymers obtained in the presence of zinc chloride are not exactly equimolar alternating but always contain a methyl methacrylate unit in excess, and the relative intensities of the three peaks for the aromatic C1 carbon change with the copolymer composition. These results are explained by a proposed mechanism: the alternating copolymerization proceeds through the homopolymerization of a ternary molecular complex composed of a metal halide, methyl methacrylate, and styrene, accompanied with the stereoregulation following first-order Markovian statistics; the increase of methyl methacrylate content in the copolymer prepared in the presence of zinc chloride is caused by the participation of the binary molecular complex composed of a metal halide and methyl methacrylate in addition to the ternary molecular complex.  相似文献   

3.
A kinetic investigation of the alternating copolymerization of butadiene and methyl methacrylate with the use of a system of ethylaluminum dichloride and vanadyl chloride as a catalyst was undertaken. The relation between the polymer yield and the molar fraction of methyl methacrylate in the feed was examined by continuous variation of butadiene and methyl methacrylate, the concentrations of total monomer, ethylaluminum dichloride, and vanadyl chloride being kept constant. This continuous variation method revealed that the polymer yield attains its maximum value with a monomer feed containing less than the 0.5 molar fraction of methyl methacrylate. This value of the molar fraction of methyl methacrylate affording the maximum polymer yield decreased on increasing the total monomer concentration but was not changed on varying the concentration of ethylaluminum dichloride. The number of active species estimated from the relation between yield and molecular weight of the polymer was almost constant, regardless of the molar fraction of methyl methacrylate in the feed. Consequently, it can be said that the maximum polymer yield depends mainly on the propagation reaction, not on the initiation reaction or the termination reaction. Three types of the mechanism have been discussed for this alternating copolymerization: polymerization via alternating addition of butadiene and methyl methacrylate complexed with ethylaluminum dichloride by the Lewis-Mayo scheme; polymerization via the ternary intermediate of butadiene, methyl methacrylate, and ethylaluminum dichloride; polymerization via the complex formation of butadiene and methyl methacrylate complexed with ethylaluminum dichloride occurring only at the growing polymer radical. From the kinetic results obtained, it was shown that the first and third schemes are excluded, and polymerization by way of the ternary intermediate is compatible with the data.  相似文献   

4.
The stereo- and electronic structures of the binary molecular complex composed of methyl methacrylate and boron trifluoride are obtained by using an ab initio molecular orbital method with an STO-3G basis set. The total energy change on the binary molecular complex formation is ?1.3 X 10?2 Hartree (?8.2 kcal/mol). The electron transfer from methyl methacrylate to boron trifluoride and the change in the energy level of the lowest unoccupied molecular orbital of methyl methacrylate on the complex formation with boron trifluoride are much smaller than those on the complex formation with boron trichloride. A twisted form in which the dihedral angle between the vinyl plane and the ester plane is 16.9° is the most stable structure of the binary molecular complex composed of methyl methacrylate and boron trifluoride. A strong bonding overlap population between a β-hydrogen of methyl methacrylate and a fluorine of boron trifluoride is found in this conformation. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
The geometrical and electronic structures of the binary radical complexes of 2-methoxycarbonyl propyl radical with boron trichloride and with boron trifluoride were determined by using an ab initio molecular orbital method. The 2-methoxycarbonyl propyl radical complex was a model of the growing radical end in the copolymerization of methyl methacrylate in the presence of boron halides. The most stable structure of the binary radical complex composed of 2-methoxycarbonyl propyl radical with boron trichloride was a twisted form in which the dihedral angle between the vinyl group and the ester group was 32°, while that of the binary radical complex composed of methyl methacrylate radical with boron trifluoride was a planar form as the free radical. The frontier orbital energy of 2-methoxycarbonyl propyl radical was lowered by 0.06 au by the coordination of boron trichloride, while that was lowered only by 0.02 au by the coordination of boron trifluoride. The polymerization mechanism was elucidated on the basis of these predictions. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
A novel method is described for the preparation of diborane from aluminum, ethyl chloride, boron oxide and hydrogen via three steps; deoxyalkylation of boron oxide, hydrogenation of triethylboron and liberation of diborane. The triethylboron was prepared from aluminum, ethyl chloride and boron oxide directly at 85–110°C in 88% yield, with aluminum trichloride as by-product in 95% yield. In the presence of triethylamine and a hydrogen pressure of 130 kg/cm2, the triethylboron was hydrogenated at 200°C for 2 hours to produce borane-triethylamine complex in 92% yield. The borane-triethylamine complex was treated again at 80°C with the aluminum trichloride collected from the first step to liberate diborane in 94% yield. The overall reaction yield was 76%.  相似文献   

7.
The stereo and the electronic structures of methyl methacrylate and the binary molecular complex composed of methyl methacrylate and boron trichloride are determined by quantum chemical calculations based on ab initio molecular orbital methods with the STO-3G basis set. The Stable structures of methyl methacrylate in the free state are a transoid from and a cisoid form. The transoid form is slightly (0.5 kcal/mol) more stable than the cisoid form. The total energy change accompanying binary molecular complex formation is calculated to be ?43 kcal/mol. The most stable structure of the binary molecular complex composed of methyl methacrylate and boron trichloride is a twisted form in which the dihedral angle between the vinyl group and the ester group is 19.7°. A large amount of electron transfer from methyl methacrylate to boron trichloride is calculated to occur on binary molecular complex formation. Mulliken's population analysis shows the electron transfer to be the origin of the twist of the binary molecular complex. The energy level of the lowest unoccupied molecular orbital is substantially lowered by the coordination of boron trichloride.  相似文献   

8.
Methyl acrylate and styrene have been copolymerized in the presence of zinc chloride either by photoinitiation or spontaneously. The copolymerization mechanism is investigated by analyses of copolymers composition and monomer sequence distribution. The resulting copolymers are not always alternating, their composition being dependent especially on the monomer feed ratio. Appreciable deviation to higher methyl acrylate unit content from an equimolar composition occurs at monomer feed fractions of methyl acrylate over 0.7. The larger deviation is induced by higher temperature, by photoirradiation, and by greater dilution of the reaction mixture with toluene. The 13C-NMR spectrum of the alternating copolymer shows a sharp singlet at the carbonyl region, whereas the spectra of random copolymers prepared by benzoyl peroxide initiation at 60°C show a triplet splitting at the carbonyl carbon region, irrespective of copolymer composition. The relative intensities of the triplet peaks for the random copolymers are in good correspondence to the contents of triad sequences calculated by means of conventional radical copolymerization theory. These results clearly indicate that the carbonyl splitting is caused predominantly by variation of the monomer sequence and not by variation of the stereosequence. The monomer sequence distribution in the copolymers is thus directly and quantitatively measured from the split carbonyl resonance. Although the same triplet splitting appears in the spectra of methyl acrylate–rich copolymers prepared in the presence of zinc chloride at high feed ratios (>0.7) of methyl acrylate, the relative intensities of the split peaks do not fit the sequence distributions of random copolymers calculated by means of the Lewis–Mayo equation. The copolymerization yielding these peculiar sequences and the alternating sequence in the presence of zinc chloride is fully comprehended by a copolymerization mechanism proceeding between two active coordinated monomers, i.e., the ternary molecular complex composed of zinc chloride, methyl methacrylate, and styrene, and the binary molecular complex composed of zinc chloride and methyl methacrylate.  相似文献   

9.
A new method for deriving expressions for the mole fractions of alternating n-ads and the average lengths of the alternating sequences of n-component copolymers (n > 2) was developed based on the apparatus of finite Markov chains. These characteristics are considered as indexes of alternating tendency forn-component copolymerization. A specific property of n-component copolymerization (n > 3) compared with binary copolymerization is the fact that alternating n-ads might be constructed by two, three, or more types of monomeric units. In order to express this specific property of three and multi-component copolymers the term, alternating order, is introduced. The method developed in the paper permits the alternating indexes to be determined differentially in dependence of alternating order. Expressions for the average lengths and the compositions of all possible alternating sequences starting with a given monomer unit and ending with unit found only at that position, are derived as well. The alternating indexes for binary radical copolymerization of styrene and methyl methacrylate and for ternary radical copolymerization of styrene, methyl methacrylate, and acrylonitrile were determined.  相似文献   

10.
The alternating copolymerization of methyl methacrylate with styrene in the presence of stannic chloride at ?50°C in toluene was kinetically investigated both under photoirradiation and with the tri-n-butylboron-benzoyl peroxide initiator. The concentrations of the binary and ternary molecular complexes in the copolymerization solution were estimated by use of the equilibrium constants. The rates are found to be proportional to the 1.5th and 1.0th orders of the concentration of the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The conversion increases proportionally with the polymerization time, while the degree of polymerization is constant irrespective of the time. The rates depend linearly upon the square root of the intensity of the incident light and upon the concentration of tri-n-butylboron, respectively. The alternating copolymerization is confirmed experimentally to precede the homopolymerization of the monomer charged in large excess both under photoirradiation and with initiator. The kinetic results indicate consistently that the alternating copolymerization proceeds through the homopolymerization of the ternary molecular complex in the steady state with a bimolecular termination. Both the conventional radical mechanism and the double complex mechanism are unsuitable for the present alternating copolymerization.  相似文献   

11.
The alternating copolymerization of methyl methacrylate with styrene with the use of stannic chloride was kinetically examined at ?20°C in 1,2-dichloroethane both under photoirradiation and with radical initiator (2:1 tri-n-butylboron-benzoyl peroxide system). At conversions lower than 7%, the conversion increases linearly to the polymerization time, whereas the degree of polymerization is constant irrespective of the polymerization time. The alternating copolymerizations are 1.5 order and the 1.0 order reactions with respect to the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The linear dependences of the rates upon the 0.5 order of the intensity of the incident light and upon the 1.0 order of the concentration of tri-n-butylboron indicate a bimolecular termination. The rate normalized by the 1.5 order of the concentration of the coordinated methyl methacrylate and the rate normalized by the concentration of the coordinated methyl methacrylate are proportional to the 1.5 and 1.0 orders of the charged concentration of styrene, for the copolymerizations under photoirradiation and with initiator, respectively. The kinetic results in the 1,2-dichloroethane solution are quite consistent with those in the toluene solution. The alternating copolymerization mechanism, in which the ternary molecular complex predominantly homopolymerizes as a monomer unit, is confirmed.  相似文献   

12.
The copolymerization of benzofuran and acrylic monomers, such as acrylonitrile, methacrylonitrile, methyl acrylate, and methyl methacrylate, was investigated in the presence of aluminum compounds as complexing agents for acrylic monomers. Among the various kinds of aluminum compound, ethylaluminum sesquichloride is the most suitable for alternating copolymerization, whereas ethoxyaluminum compounds of low acidity allow the incorporation of excess acrylic monomer and dichloride of strong acidity is likely to induce cationic homopolymerization of benzofuran as a side reaction. The equimolar amount of sesquichloride with respect to acrylic monomer is necessary for alternating copolymerization. Azobisisobutylonitrile (AIBN) is an effective initiator but benzoyl peroxide is not. Nuclear magnetic resonance (NMR) of the copolymer indicates that the copolymer is essentially alternating, although some block sequences of acrylic monomer sometimes exist. As a mechanism the copolymerization via a ternary complex of acrylic monomer, aluminum compound, and benzofuran is considered. Free acrylic monomer participates in copolymerization when the amount or acidity of the complexing agent is insufficient. A quantitative relation between monomer and copolymer composition is derived from a scheme based on the copolymerization of the donor monomer-acceptor monomer complex with free acrylic monomer.  相似文献   

13.
The equilibrium constants for the complex formation between stannic chloride and methyl methacrylate were determined in n-hexane–toluene solution at 0, ?20, and ?30°C by using the absorption band at 350 nm. Continuous variation plots at ?20°C in n-hexane based on the 1H-chemical shifts definitely show a 1:1 interaction between the coordinated methyl methacrylate and styrene or toluene. The magnitudes of the shifts for the four groups of protons in methyl methacrylate are found to be in a specific ratio in common with the 1:2 complex–styrene or -toluene system. The equilibrium constants for the ternary molecular complex formation between the 1:2 complex and styrene or toluene were determined in n-hexane in the temperature range ?50 to +20°C by use of the chemical shifts. The concentrations of the complex species in the alternating copolymerization solutions were estimated by use of the equilibrium constants. There is a linear relationship between the enthalpy and the entropy changes for the ternary molecular complex formation, which is governed by the enthalpy factor. The specificity of the interactions indicates a specific time-averaged orientation of benzene ring to the coordinated methyl methacrylate. The effects of the coordination of methyl methacrylate to stannic chloride were discussed on the basis of results of 13C-NMR spectroscopy.  相似文献   

14.
The 1:2 stannic chloride–methyl methacrylate complex, the 1:2 stannic chloride–acrylonitrile complex, the ethylaluminum dichloride–methyl methacrylate complex, and the ethylaluminum dichloride–acrylonitrile complex exhibit charge-transfer absorption bands in the wavelength region longer than 300 nm with electron-donating compounds such as mesitylene, styrene, toluene, and butadiene. The absorption spectrum of the mixture of either methyl methacrylate or acrylonitrile with the electron-donating compound is, however, a superpostion of the spectra of the components without any additional absorption. Methyl isobutylate, 3-butenyl methyl ketone, and propionitrile show no charge-transfer absorption bands with the electron-donating compound, even in the presence of a metal halide. Both the presence of the C-C double bond conjugating with the polar group and the coordination of the polar group to a metal halide are essential for an electron-accepting monomer to exhibit a charge-transfer absorption with the electron-donating compound. Continuous variation plots with the use of the charge-transfer band definitely show a 1:1 interaction between the methyl methacrylate coordinated to stannic chloride and styrene, resulting in the determination of the equilibrium constants for the charge-transfer complex formation in methylene chloride: 0.21 l./mole at 25°C and 0.67 l./mole at ?50°C. The charge-transfer absorption is attributed to a ternary molecular complex composed of a metal halide, a polar vinyl monomer, and an electron-donating monomer.  相似文献   

15.
Radical copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride with methyl methacrylate and allyl methacrylate in the bulk and methanol solution in the presence of azobis-isobutyric acid dinitryle at 70–90°C has been studied. Copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride with methyl methacrylate or allyl methacrylate in the bulk proceeds with formation of random copolymers enriched in methacrylate units; in the copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidiny chloride with methyl methacrylate in methanol, the copolymerization constants of the monomers become close. The kinetic parameters of the reaction have been studied, the relative activities of the monomers have been determined. It has been found that 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride is copolymerized with allyl methacrylate or methylmethacrylate to form pyrrolidinium structures in the cyclolinear polymer chain. At high degrees of conversion of the copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride with allyl methacrylate, the viscosity increases and the side polymer chains are crosslinked by “allyl bonds” to form insoluble copolymers, swelling in benzene and DMSO.  相似文献   

16.
The equimolar alternating copolymerization of methyl methacrylate (MMA) with styrene (St) in the presence of stannic chloride in toluene (Tl) is investigated kinetically. The concentrations of the ternary molecular complexes, [SnCl4-MMA … St] and [SnCl4-MMA … T1], are calculated by use of the formation constants of the ternary molecular complexes. The rates of copolymerization under photo-irradiation and with tri-n-butyl boron-benzoyl peroxide as an initiator are proportional to the 1.5th order and 1. Oth order, respectively, of the concentration of the ternary molecular complex [SnCl4 · MMA … St]. The alternating copolymerization precedes the homopolymerization of the methyl methacrylate charged in excess. The alternating regulation of the copolymerization is ascribed to the homopolymerization of the ternary molecular complex from the kinetic results. The magnitudes of the shifts for  相似文献   

17.
Commercial poly(vinyl chloride) (PVC) contains allyl chloride and tertiary chloride groups as structural defects. This article reports the use of the active chloride groups from the structural defects of PVC as initiators for the metal‐catalyzed living radical graft copolymerization of PVC. The following monomers were investigated in graft copolymerization experiments: methyl methacrylate, butyl methacrylate, tert‐butyl methacrylate, butyl acrylate, methacrylonitrile, acrylonitrile, styrene, 4‐chloro‐styrene, 4‐methyl‐styrene, and isobornylmethacrylate. Cu(0)/bpy, CuCl/bpy, CuBr/bpy, Cu2O/bpy, Cu2S/bpy, and Cu2Se/bpy (where bpy = 2,2′‐bipyridine) were used as catalysts. Living radical polymerizations initiated from 1‐chloro‐3‐methyl‐2‐butene, allyl bromide, and 1,4‐dichloro‐2‐butene as models for the allyl chloride structural defects and from 3‐chloro‐3‐methyl‐pentane and 1,3‐dichloro‐3‐methylbutane as models for the tertiary chloride defects were studied. Graft copolymerization experiments were accessible in solution, in a swollen state, and in bulk. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1120–1135, 2001  相似文献   

18.
The 1:1 or 2:1 complex of acrylonitrile, methacrylonitrile, or methyl methacrylate with ZnCl2 was copolymerized with styrene at the temperature of 0–30°C without any initiator. The structure of the copolymer from methyl methacrylate complex and styrene was examined by NMR spectroscopy. The complexes of acrylonitrile or methacrylonitrile with ZnCl2 gave a copolymer containing about 50 mole-% styrene units. The complexes of methyl methacrylate yielded an alternating copolymer when the feed molar ratio of methyl methacrylate to styrene was small, but with increasing feed molar ratio the resulting copolymer consisted of about 2 moles of methyl methacrylate per mole of styrene. The formation of a charge-transfer complex of styrene with a monomer coordinated to zinc atom was inferred from the ultraviolet spectra. The regulation of the copolymerization was considered to be effected by the charge-transfer complex. The copolymer resulting from the 2:1 methyl methacrylate–zinc chloride complex had no specific tacticity, whereas the copolymer from the 1:1 complex was richer in coisotacticity than in cosyndiotacticity. The change of the composition of the copolymer and its specific tacticity in the polymerization of the methyl methacrylate complex is related to the structure of the complex.  相似文献   

19.
The polymerizations of methyl methacrylate, styrene, and isobutyl vinyl ether with the binary systems of reduced nickel and chlorosilanes [(CH3)nSiCl4?n, n = 0–3] have been investigated. It was found that these systems could act as both radical and cationic initiators, depending on the nature of vinyl monomers used. The kinetic investigations indicated that methyl methacrylate polymerized via a radical mechanism, and the initiating activity of chlorosilanes decreased in the following order: SiCl4 > CH3SiCl3 > (CH3)2SiCl2 > (CH3)3SiCl ? 0. Cationic initiations were observed in the polymerizations of styrene and isobutyl vinyl ether. In the latter case, the activity of chlorosilanes was in the following order: (CH3)3SiCl > (CH3)2SiCl2 > CH3SiCl3 ? SiCl4. From the results obtained, a possible mechanism of selective initiation with these systems is proposed and discussed.  相似文献   

20.
The copolymer composition curve of the methyl methacrylate–styrene copolymer obtained by the copolymerization in the presence of ZnCl2 has more alternating tendency than that of ordinary methyl methacrylate–styrene copolymer obtained by radical copolymerization. The fine structure of the copolymer was examined by NMR, and the mechanism of the propagation step of the copolymerization in the presence of ZnCl2, which was proposed in the first report of this series, was verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号