首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addy Pross  Leo Radom 《Tetrahedron》1980,36(5):673-676
Ab initio molecular orbital theory including full geometry optimization at the 4-31G level is used to examine the interactions between substitutents X(X = Li, BeH, BH2, CH3, NH2, OH and F) and substrates Y(Y = NH3+, CH3, BH3?) in the isoelectronic series XNH3+, XCH3 and XBH3?. The results indicate that the interaction energies are dominated by σ-effects. NH3+ is found to interact favorably with the σ-donors (e.g. Li, BeH and BH2) and unfavorably with the σ-acceptors (e.g. F, OH, NH2). The reverse pattern a observed for XBH3?. The range of interaction energies for XCH3 is considerably smaller than for XNH3+ and XBH3?.  相似文献   

2.
Ab initio molecular orbital theory is used to examine the effect of substituents on bond lengths in mono- and disubstituted methanes. The relative importance of electrostatic and orbital interaction terms are assessed. The results suggest that for substituents (X) which show powerful σ effects and weak π interactions (e.g., F), the changes in bond length are due primarily to the electrostatic component except in some disubstituted methanes in which case the change in the hyperconjugative ability of the C—X bond is also important. On the other hand, substituents X which show weak σ effects but powerful π interactions (e.g., NH2) affect bond lengths primarily through hyperconjugative interaction of a filled or vacant π-type orbital on X with the adjacent bonds.  相似文献   

3.
Anab initio study of the electronic structure of several 22-electrons molecules is presented. The equilibrium geometries of their ground state are calculated at the SCF level using the 6–31G basis set and are found to be in good agreement with the experimental geometries. The dissociation process of these molecules leading to the isoelectronic products CO or N2 on the one hand and BH3, CH2, NH and O on the other hand is studied. The least-energy dissociation paths of the ground states determined at the SCF level are compared on the basis of electron density interactions. The dissociation energies corresponding to the two lowest dissociation channels are calculated. In these calculations, the correlation energy is taken into account using a non-variational method developed previously. The calculated values of dissociation energies are in good agreement with the existing experimental values. The results permit to predict values for HNCO, BH3CO and CH2N2 and to confirm the instability of BH3N2.Aspirant du Fonds National Belge de la Recherche Scientifique.  相似文献   

4.
The effect of substituents on the activation energy for primary dissociation processes in the molecular ions of mono- and para and meta di-substituted benzenes has been examined. Where the daughter ion retains the substituent group, variation of the energy of activation derives from a combination of the effects of substituents on the ionisation potential of the molecular ion and the appearance potential of the daughter ion. An equation relating the energy of activation for the fragmentation of the molecular ion of a mono-substituted benzene to that of related para and meta di-substituted benzenes is presented.  相似文献   

5.
6.
7.
Addy Pross  Leo Radom 《Tetrahedron》1980,36(13):1999-2003
Ab initio molecular orbital theory is used to study substituent effects in a series of β-substituted Et radicals XCH2CH2. For X = BH2 (plan.), CH3, NH2, OH and F, only slight conformational preferences and weak stabilizations are indicated. Such behaviour may be rationalized, using a PMO model, in terms of opposing changes, accompanying variation in X, in positive and negative hyperconjugation between the XCH2 group and the CH2 centre. On the other hand, for groups containing an appropriately oriented, low-lying vacant orbital, viz. X = Li, BeH and BH2 (perp.), there is a pronounced preference for the perpendicular conformation of the radical. This is attributed to 1,3-interaction between the singly-occupied 2p(C) orbital and the vacant 2p(X) orbital.  相似文献   

8.
The rate coefficient for NH2 + CH4 → NH3 + CH3 (R1) has been measured in a shock tube in the temperature range 1591–2084 K using FM spectroscopy to monitor NH2 radicals. The measurements are combined with a calculation of the potential energy surface and canonical transition state theory with WKB tunneling to obtain an expression for k1 = 1.47 × 103 T 3.01 e?5001/T(K) cm3 mol?1 s?1 that describes available data in the temperature range 300 –2100 K. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 304–309, 2003  相似文献   

9.
The matrix isolation technique has been combined with infrared spectroscopy to identify and characterize the product of the codeposition of CH3ReO3 with NH3 into inert matrices at 14 K. This codeposition led to the formation of the isolated 1:1 complex between these two reagents and its isolation in argon and nitrogen matrices. The complex is characterized by perturbations to all of the vibrational modes of the NH3 subunit in the complex, including a large, 185 cm(-1) blue shift of v2, the symmetric deformation mode. In addition, shifts of the -ReO3 antisymmetric stretch and -ReO3 symmetric bending of the CH3ReO3 subunit in the complex were observed. This complex, while predicted theoretically, has not been reported previously.  相似文献   

10.
11.
Here we identify structural inhomogeneity on a micrometer scale across the surface of a CH3NH3PbI3 perovskite single crystal. At the crystal edge a local distortion of the crystal lattice is responsible for a widening of the optical bandgap and faster photo-carrier recombination. These effects are inherently present at the edge of the crystal, and further enhanced upon water intercalation, as a preliminary step in the hydration of the perovskite material.  相似文献   

12.
Photoelectron spectra of two species, Al3O3(H2O)2- and Al3O3(CH3OH)2-, that are produced by the addition of two water or methanol molecules to Al3O3- are interpreted with density-functional geometry optimizations and electron propagator calculations of vertical electron detachment energies. In both cases, there is only one isomer that is responsible for the observed spectral features. A high barrier to the addition of a second molecule may impede the formation of Al3O3N2H6- clusters in an analogous experiment with NH3.  相似文献   

13.
In this work, we have calculated the thermodynamic parameters of the polymerization of some derivatives of the species CH2X (X = CH2, NH, O), using ab initio methods of quantum chemistry and the usual formalism of statistical thermodynamics. It is shown that the Gibbs functions ΔG(l, c) corresponding to CH2NOCH3, CNCHNCN, CF2O and all the percyano derivatives are largely positive which indicates that the spontaneous (radical or ionic) chain polymerization of these monomers is thermodynamically prohibited.  相似文献   

14.
Substituent effects on the structure of radicals and parent hydrocarbons formed by isolated or condensed three-membered rings have been investigated by Hartree-Fock, post-Hartree-Fock and density functional methods. The trends of structural parameters computed for the hydrocarbon systems are in agreement with available experimental data. Substituent effects can be rationalized in terms of interactions between localized orbitals obtained by natural bond analysis. The effects are even larger in free radicals and can be analyzed using the same model. Received: 13 March 1998 / Accepted: 13 July 1998 / Published online: 9 October 1998  相似文献   

15.
16.
Liao HY  Su MD  Chu SY 《Inorganic chemistry》2000,39(16):3522-3525
The effect of substitution on the potential energy surfaces of HC identical to GeX (X = H, CH3, F, and Cl) were explored using density functional theory (B3LYP) and QCISD methods. The theoretical findings suggest that (H)(X)C = Ge: is the minimum on the singlet potential energy surface, regardless of the substituents (X) used. On the other hand, HC identical to GeX and XC identical to GeH are found to be local minima on the surface, but they are neither kinetically nor thermodynamically stable.  相似文献   

17.
A large set of more than 3 million molecules was processed to find all the organic substituents contained in the set and to identify the most common ones. During the analysis, 849 574 unique substituents were found. Extrapolated to the number of known organic molecules, this result suggests that about 3.1 million substituents are known. Based on these findings the size of virtual organic chemistry space accessible using currently known synthetic methods is estimated to be between 10(20) and 10(24) molecules. The extracted substituents were characterized by calculated electronic, hydrophobic, steric, and hydrogen bonding properties as well as by the drug-likeness index. Various possible applications of such a large database of drug-like substituents characterized by calculated properties are discussed and illustrated by reference to a Web-based tool for automatic identification of bioisosteric groups.  相似文献   

18.
A computational study of dimers formed by aniline and one or two CH3X molecules, X being CN, Cl or F, was carried out to elucidate the main characteristics of the interacting systems. Two different structures were found for each of the dimers, depending on the relative location of the CH3X molecule with respect to the NH2 hydrogen atoms. The most stable complex is formed with acetonitrile, with a complexation energy amounting to ?27.0?kJ/mol. Methyl chloride and methyl fluoride form complexes with complexation energies amounting to ?18.1 and ?17.5?kJ/mol, respectively, though the structural arrangement is quite different for both structures. In most complexes, the leading contribution to the stabilization of the complex is dispersion, though the electrostatic contribution is almost as important. Three different minima were obtained for clusters containing two CH3X molecules depending on the side they occupy with respect to the phenyl ring. The complexation energies for these structures amount to ?58.5, ?38.6 and ?36.3?kJ/mol for acetonitrile, methyl chloride and methyl fluoride, respectively.  相似文献   

19.
The carbon-13 shifts of C-1, C-2 and C-3 are determined in a series of 1-cyclohexen-3-ones substituted in position 1. Linear relationships are demonstrated between the substituent chemical shifts of corresponding carbons in substituted ethylenes, butadienes, α-enones and benzenes. The substituent chemical shifts of proton H-2 are also reported and correlated with those of corresponding protons in ethylenes and benzenes. The slopes of the lines for the carbons directly linked to the substituent are close to unity, showing a relative independence of the substituent effect for this nucleus from the variation of the unsaturated framework. In contrast to this, the transmission of the substituent effect through one double bond (nuclei β to the substituents) decreases as the number of conjugated π bonds in the whole structure increases. This relationship is interpreted as being due to the ability of an unsaturated system to spread the variation of π electron density induced by the substituent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号