首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is degree-bounded-colorable (briefly, db-colorable) if it can be properly vertex-colored with colors 1,2, …, k ≤ Δ(G) such that each vertex v is assigned a color c(v) ≤ v. We first prove that if a connected graph G has a block which is neither a complete graph nor an odd cycle, then G is db-colorable. One may think of this as an improvement of Brooks' theorem in which the global bound Δ(G) on the number of colors is replaced by the local bound deg v on the color at vertex v. Extending the above result, we provide an algorithmic characterization of db-colorable graphs, as well as a nonalgorithmic characterization of db-colorable trees. We briefly examine the problem of determining the smallest integer k such that G is db-colorable with colors 1, 2,…, k. Finally, we extend these results to set coloring. © 1995, John Wiley & Sons, Inc.  相似文献   

2.
A graph G is k‐choosable if its vertices can be colored from any lists L(ν) of colors with |L(ν)| ≥ k for all ν ∈ V(G). A graph G is said to be (k,?)‐choosable if its vertices can be colored from any lists L(ν) with |L(ν)| ≥k, for all ν∈ V(G), and with . For each 3 ≤ k ≤ ?, we construct a graph G that is (k,?)‐choosable but not (k,? + 1)‐choosable. On the other hand, it is proven that each (k,2k ? 1)‐choosable graph G is O(k · ln k · 24k)‐choosable. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
Let G be a simple graph. The achromatic number ψ(G) is the largest number of colors possible in a proper vertex coloring of G in which each pair of colors is adjacent somewhere in G. For any positive integer m, let q(m) be the largest integer k such that ≤ m. We show that the problem of determining the achromatic number of a tree is NP-hard. We further prove that almost all trees T satisfy ψ (T) = q(m), where m is the number of edges in T. Lastly, for fixed d and ϵ > 0, we show that there is an integer N0 = N0(d, ϵ) such that if G is a graph with maximum degree at most d, and mN0 edges, then (1 - ϵ)q(m) ≤ ψ (G) ≤ q(m). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 129–136, 1997  相似文献   

4.
A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most Δ(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.  相似文献   

5.
The cyclic chromatic number χc(G) of a 2‐connected plane graph G is the minimum number of colors in an assigment of colors to the vertices of G such that, for every face‐bounding cycle f of G, the vertices of f have different colors. Plummer and Toft proved that, for a 3‐connected plane graph G, under the assumption Δ*(G) ≥ 42, where Δ*(G) is the size of a largest face of G, it holds that χc(G) ≤ Δ*(G) + 4. They conjectured that, if G is a 3‐connected plane graph, then χc>(G) ≤ Δ*(G) + 2. In the article the conjecture is proved for Δ*(G) ≥ 24. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 177–189, 1999  相似文献   

6.
Let G be a k-regular 2-connected graph of order n. Jackson proved that G is hamiltonian if n ≤ 3k. Zhu and Li showed that the upper bound 3k on n can be relaxed to 22/7k if G is 3-connected and k ≥ 63. We improve both results by showing that G is hamiltonian if n ≤ 7/2k − 7 and G does not belong to a restricted class F of nonhamiltonian graphs of connectivity 2. To establish this result we obtain a variation of Woodall's Hopping Lemma and use it to prove that if n ≤ 7/2k − 7 and G has a dominating cycle (i.e., a cycle such that the vertices off the cycle constitute an independent set), then G is hamiltonian. We also prove that if n ≤ 4k − 3 and GF, then G has a dominating cycle. For k ≥ 4 it is conjectured that G is hamiltonian if n ≤ 4k and GF. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
A graph G is bisectable if its edges can be colored by two colors so that the resulting monochromatic subgraphs are isomorphic. We show that any infinite tree of maximum degree Δ with infinitely many vertices of degree at least Δ −1 is bisectable as is any infinite tree of maximum degree Δ ≤ 4. Further, it is proved that every infinite tree T of finite maximum degree contains a finite subset E of its edges so that the graph TE is bisectable. To measure how “far” a graph G is from being bisectable, we define c(G) to be the smallest number k > 1 so that there is a coloring of the edges of G by k colors with the property that any two monochromatic subgraphs are isomorphic. An upper bound on c(G), which is in a sense best possible, is presented. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 113–127, 2000  相似文献   

8.
Let C(G) denote the number of spanning trees of a graph G. It is shown that there is a function ?(k) that tends to zero as k tends to infinity such that for every connected, k-regular simple graph G on n vertices C(G) = {k[1 ? δ(G)]}n. where 0 ≤ δ(G) ≤ ?(k).  相似文献   

9.
Given lists of available colors assigned to the vertices of a graph G, a list coloring is a proper coloring of G such that the color on each vertex is chosen from its list. If the lists all have size k, then a list coloring is equitable if each color appears on at most ?|V(G)|/k? vertices. A graph is equitably kchoosable if such a coloring exists whenever the lists all have size k. Kostochka, Pelsmajer, and West introduced this notion and conjectured that G is equitably k‐choosable for k>Δ(G). We prove this for graphs of treewidth w≤5 if also k≥3w?1. We also show that if G has treewidth w≥5, then G is equitably k‐choosable for k≥max{Δ(G)+w?4, 3w?1}. As a corollary, if G is chordal, then G is equitably k‐choosable for k≥3Δ(G)?4 when Δ(G)>2. © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

11.
Let G be a planar graph. The vertex face total chromatic number χ13(G) of G is the least number of colors assigned to V(G)∪F(G) such that no adjacent or incident elements receive the same color. The main results of this paper are as follows: (1) We give the vertex face total chromatic number for all outerplanar graphs and modulus 3-regular maximal planar graphs. (2) We prove that if G is a maximal planar graph or a lower degree planar graph, i.e., ∠(G) ≤ 3, then χ13(G) ≤ 6. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

13.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

14.
For a graph G whose number of edges is divisible by k, let R(G,Zk) denote the minimum integer r such that for every function f: E(Kr) ? Zk there is a copy G1 of G in Kr so that Σe∈E(G1) f(e) = 0 (in Zk). We prove that for every integer k1 R(Kn, Zk)n + O(k3 log k) provided n is sufficiently large as a function of k and k divides (). If, in addition, k is an odd prime-power then R(Kn, Zk)n + 2k - 2 and this is tight if k is a prime that divides n. A related result is obtained for hypergraphs. It is further shown that for every graph G on n vertices with an even number of edges R(G,Z2)n + 2. This estimate is sharp. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

16.
The k-domination number of a graph G, γk(G), is the least cardinality of a set U of verticies such that any other vertex is adjacent to at least k vertices of U. We prove that if each vertex has degree at least k, then γk(G) ≤ kp/(k + 1).  相似文献   

17.
18.
A plane graph G is edge-face k-colorable if its edges and faces can be colored with k colors such that any two adjacent or incident elements receive different colors. It is known that every plane graph G of maximum degree Δ ≥ 8 is edge-face (Δ + 1)-colorable. The condition Δ ≥ 8 is improved to Δ ≥ 7 in this paper.  相似文献   

19.
Given a list of boxes L for a graph G (each vertex is assigned a finite set of colors that we call a box), we denote by f(G, L) the number of L-colorings of G (each vertex must be colored wiht a color of its box). In the case where all the boxes are identical and of size k, f(G, L) = p(G, k), where P=G, k) is the chromatic polynominal of G. We denote by F(G, k) the minimum of f(G, L) over all the lists of boxes such that each box has size at least k. It is clear that F(G, k) ≤ P(G, k) for all G, k, and we will see in the introduction some examples of graphs such that F(G, k) < P(G, k) for some k. However, we will show, in answer to a problem proposed by A. Kostochka and A. Sidorenko (Fourth Czechoslovak Symposium on Combinatorics, Prachatice, Jin, 1990), that for all G, F(G, k) = P(G, k) for all k sufficiently large. It will follow in particular that F(G, k) is not given by a polynominal in k for all G. The proof is based on the analysis of an algorithm for computing f(G, L) analogous to the classical one for computing P(G, k).  相似文献   

20.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号