首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph is locally connected if every neighborthood induces a connected subgraph. We show here that every connected, locally connected graph on p ≥ 3 vertices and having no induced K1,3 is Hamiltonian. Several sufficient conditions for a line graph to be Hamiltonian are obtained as corollaries.  相似文献   

2.
A graph G is locally connected if the subgraph induced by the neighbourhood of each vertex is connected. We prove that a locally connected graph G of order p ≥ 4, containing no induced subgraph isomorphic to K1,3, is Hamilton-connected if and only if G is 3-connected. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
An acyclic edge‐coloring of a graph is a proper edge‐coloring such that the subgraph induced by the edges of any two colors is acyclic. The acyclic chromatic index of a graph G is the smallest number of colors in an acyclic edge‐coloring of G. We prove that the acyclic chromatic index of a connected cubic graph G is 4, unless G is K4 or K3,3; the acyclic chromatic index of K4 and K3,3 is 5. This result has previously been published by Fiam?ík, but his published proof was erroneous.  相似文献   

4.
We say that G is almost claw-free if the vertices that are centers of induced claws (K1,3) in G are independent and their neighborhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free. It is shown that (i) every even connected almost claw-free graph has a perfect matching and (ii) every nontrivial locally connected K1,4-free almost claw-free graph is fully cycle extendable.  相似文献   

5.
In this paper, we first prove that for any connected graph G with at least two vertices, there is an integer m for which the strong product X⌅Gm has pancyclic ordering from each vertex. After characterizing the graphs G for which GX⌅K2 is Hamiltonian, we determine a criterion for extendability of cycles. We also prove that if G is a connected, K1.3-free graph with δ ≥ 2, then GX⌅XK2 is fully cycle extendable as well as 1-edge Hamiltonian. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

7.
We show that the edges of every 3‐connected planar graph except K4 can be colored with two colors in such a way that the graph has no color‐preserving automorphisms. Also, we characterize all graphs that have the property that their edges can be 2‐colored so that no matter how the graph is embedded in any orientable surface, there is no homeomorphism of the surface that induces a nontrivial color‐preserving automorphism of the graph.  相似文献   

8.
 If two non-adjacent vertices of a connected graph that have a common neighbor are identified and the resulting multiple edges are reduced to simple edges, then we obtain another graph of order one less than that of the original graph. This process can be repeated until the resulting graph is complete. We say that we have folded the graph onto complete graph. This process of folding a connected graph G onto a complete graph induces in a very natural way a partition of the vertex-set of G. We denote by F(G) the set of all complete graphs onto which G can be folded. We show here that if p and q are the largest and smallest orders, respectively, of the complete graph in F(W n ) or F(F n ), then K s is in F(W n ) or F(F n ) for each s, qsp. Lastly, we shall also determine the exact values of p and q. Received: October, 2001 Final version received: June 26, 2002  相似文献   

9.
A graph is said to beK 1,3-free if it contains noK 1,3 as an induced subgraph. It is shown in this paper that every 2-connectedK 1,3-free graph contains a connected [2,3]-factor. We also obtain that every connectedK 1,3-free graph has a spanning tree with maximum degree at most 3. This research is partially supported by the National Natural Sciences Foundation of China and by the Natural Sciences Foundation of Shandong Province of China.  相似文献   

10.
The authors previously published an iterative process to generate a class of projective‐planar K3, 4‐free graphs called “patch graphs.” They also showed that any simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a subgraph of a patch graph. In this article, we describe a simpler and more natural class of cubic K3, 4‐free projective‐planar graphs that we call Möbius hyperladders. Furthermore, every simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a minor of a Möbius hyperladder. As applications of these structures we determine the page number of patch graphs and of Möbius hyperladders.  相似文献   

11.
LetK be a connected graph. A spanning subgraphF ofG is called aK-factor if every component ofF is isomorphic toK. On the existence ofK-factors we show the following theorem: LetG andK be connected graphs andp be an integer. Suppose|G| = n|K| and 1 <p < n. Also suppose every induced connected subgraph of orderp|K| has aK-factor. ThenG has aK-factor.  相似文献   

12.
For any nontrivial connected graph F and any graph G, the F-degree of a vertex v in G is the number of copies of F in G containing v. G is called F-continuous if and only if the F-degrees of any two adjacent vertices in G differ by at most 1; G is F-regular if the F-degrees of all vertices in G are the same. This paper classifies all P 4-continuous graphs with girth greater than 3. We show that for any nontrivial connected graph F other than the star K 1,k , k ⩾ 1, there exists a regular graph that is not F-continuous. If F is 2-connected, then there exists a regular F-continuous graph that is not F-regular.   相似文献   

13.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If the prism over G is hamiltonian, we say that G is prism‐hamiltonian. We prove that triangulations of the plane, projective plane, torus, and Klein bottle are prism‐hamiltonian. We additionally show that every 4‐connected triangulation of a surface with sufficiently large representativity is prism‐hamiltonian, and that every 3‐connected planar bipartite graph is prism‐hamiltonian. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 181–197, 2008  相似文献   

14.
We consider a random graph that evolves in time by adding new edges at random times (different edges being added at independent and identically distributed times). A functional limit theorem is proved for a class of statistics of the random graph, considered as stochastic processes. the proof is based on a martingale convergence theorem. the evolving random graph allows us to study both the random graph model Kn, p, by fixing attention to a fixed time, and the model Kn, N, by studying it at the random time it contains exactly N edges. in particular, we obtain the asymptotic distribution as n → ∞ of the number of subgraphs isomorphic to a given graph G, both for Kn, p (p fixed) and Kn, N (N/(n2)→ p). the results are strikingly different; both models yield asymptotically normal distributions, but the variances grow as different powers of n (the variance grows slower for Kn, N; the powers of n usually differ by 1, but sometimes by 3). We also study the number of induced subgraphs of a given type and obtain similar, but more complicated, results. in some exceptional cases, the limit distribution is not normal.  相似文献   

15.
We prove that if G is a 5‐connected graph embedded on a surface Σ (other than the sphere) with face‐width at least 5, then G contains a subdivision of K5. This is a special case of a conjecture of P. Seymour, that every 5‐connected nonplanar graph contains a subdivision of K5. Moreover, we prove that if G is 6‐connected and embedded with face‐width at least 5, then for every vV(G), G contains a subdivision of K5 whose branch vertices are v and four neighbors of v.  相似文献   

16.
Various Harniltonian-like properties are investigated in the squares of connected graphs free of some set of forbidden subgraphs. The star K1,4 the subdivision graph of K1,3, and the subdivision graph of K1,3 minus an endvertex play central roles. In particular, we show that connected graphs free of the subdivision graph of K1,3 minus an endvertex have vertex pancyclic squares.  相似文献   

17.
Suppose G is a graph, k is a non‐negative integer. We say G is k‐antimagic if there is an injection f: E→{1, 2, …, |E| + k} such that for any two distinct vertices u and v, . We say G is weighted‐k‐antimagic if for any vertex weight function w: V→?, there is an injection f: E→{1, 2, …, |E| + k} such that for any two distinct vertices u and v, . A well‐known conjecture asserts that every connected graph GK2 is 0‐antimagic. On the other hand, there are connected graphs GK2 which are not weighted‐1‐antimagic. It is unknown whether every connected graph GK2 is weighted‐2‐antimagic. In this paper, we prove that if G has a universal vertex, then G is weighted‐2‐antimagic. If G has a prime number of vertices and has a Hamiltonian path, then G is weighted‐1‐antimagic. We also prove that every connected graph GK2 on n vertices is weighted‐ ?3n/2?‐antimagic. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
For a connected graph G let L(G) denote the maximum number of leaves in any spanning tree of G. We give a simple construction and a complete proof of a result of Storer that if G is a connected cubic graph on n vertices, then L(G) ? [(n/4) + 2], and this is best possible for all (even) n. The main idea is to count the number of “dead leaves” as the tree is being constructed. This method of amortized analysis is used to prove the new result that if G is also 3-connected, then L(G) ? [(n/3) + (4/3)], which is best possible for many n. This bound holds more generally for any connected cubic graph that contains no subgraph K4 - e. The proof is rather elaborate since several reducible configurations need to be eliminated before proceeding with the many tricky cases in the construction.  相似文献   

19.
A graph G is locally n-connected, n ≥ 1, if the subgraph induced by the neighborhood of each vertex is n-connected. We prove that every connected, locally 2-connected graph containing no induced subgraph isomorphic to K1,3 is panconnected.  相似文献   

20.
It is shown that every connected vertex-transitive graph of order 6p, where p is a prime, contains a Hamilton path. Moreover, it is shown that, except for the truncation of the Petersen graph, every connected vertex-transitive graph of order 6p which is not genuinely imprimitive contains a Hamilton cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号