首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 93 毫秒
1.
环氧乙烷(EO)环氧丙烷(PO)的共聚物有较好的破乳效果,是目前较理想的破乳剂,已在油田得到应用。这类表面活性剂的特点是只要适当调节EO和PO的比例,就既可用作W/O型乳状液的破乳剂,也可用作O/W型乳状液的破乳剂,但关于后者的研究很少。前已报导加入脂肪醇可显著提高这类表面活性剂对W/O型乳状液的破乳效果。本文继续研究脂肪醇对这类表面活性剂破坏O/W型乳状液的影响。  相似文献   

2.
Water-in-oil-in-water (W/O/W) double emulsion can be prepared by incomplete phase inversion method using both medium chain triglycerides (MCT) and isopropyl myristate (IPM) as oil phase, Span 85-Tween 80 (HLB values of 2.5-3.0) as mixed emulsifiers. The preparation method was simple, and the final double emulsions were proved of good microstructure and particle size distribution. Owning to the addition of Tween 80 to Span 85, interfacial tension, interfacial viscosity and modulus decreased, which contributed to the phase inversion. Furthermore, formation of reverse micelles under high-speed dispersion may be a hypothesis to explain the incomplete phase inversion phenomenon.  相似文献   

3.
W/O/W乳液的渗透溶胀与夹带溶胀   总被引:6,自引:0,他引:6  
研究了W/O/W乳液的溶胀,实验结果表明,渗透溶胀随内外相溶液间的渗透压差、表面活性剂及载体浓度的增大而增加,但随膜粘度的增加而降低,渗透压差较高时,水渗透的影响大于夹带的影响;膜相中含氧化合物对溶胀的影响大于含氮化合物,采用Span 80作乳化剂时,比采用E 644渗透溶胀约高6倍,夹带溶胀也较高;重复聚结再分散使夹带溶胀急剧增加,因而多级混合澄清槽对液膜操作似不适用。  相似文献   

4.
In the frame of formulation of W/O emulsions entrapping polysaccharides devoted to agricultural applications, the aim of this work was to study the stability over time of these emulsions, stabilized with either soybean lecithin or polyglycerol polyricinoleate (PGPR) as emulsifiers. Emulsifiers were dissolved in oil phase, and polysaccharides (carboxymethycellulose (CMC), guar, xanthan) in ultrapure water. Emulsions stability was studied through natural aging tests and accelerated aging tests, using bottle tests, microscopy and calorimetry. Experiments showed that PGPR was more efficient than lecithin to stabilize emulsions containing the polysaccharides studied, and that emulsions prepared with CMC showed the best stability.  相似文献   

5.
The present study reports on the influence of partially hydrolyzed polyacrylamide (HPAM) on essential w/o emulsion properties. The characterization has been undertaken with low field NMR to follow droplet sizes and distributions, sedimentation and coalescence kinetic, bench-scale electrocoalescence (Ecrit) experiments to follow emulsion stability changes, and electrorheology to detect changes in the viscosity upon applying an external electric field. The result is that HPAM does not basically influence the droplet size distribution (DSD) and the stability level of the emulsions as can be expected of bulk polymers. However, there seems to be an interaction between added demulsifiers either through direct molecular interaction or via an interfacial complexation.  相似文献   

6.
Water-in-oil emulsion separation through a fibrous media bed is a complex process in industries. In this article, in order to select the optimal fibrous material for the separation of water-oil emulsion, three types of commercial fibers as fibrous beds were used to separate water from diesel oil. Based on the principle of orthogonal experimental design, a series of experiments were performed to investigate the effect of such parameters as bed porosity (0.77-0.89), bed length (100-400?mm) and settlement length (120-480?mm) on the separation efficiency and the superficial velocity, and then three parameters were optimized to achieve good separation performance. The experiment showed that the separation efficiency could reach 77% and the flow velocity could reach 30?m/h under the optimal bed structure and stable working conditions. The results of this paper could provide basic designing reference for the industrial application of fibrous bed coalescer.  相似文献   

7.
The irradiation of tumors in radiotherapy requires accurate 3D dosimetry. The Fricke 3D dosimeters, which were considered to be high potential of application in 3D dosimetry, suffer from a reduced temporal integrity of dose distribution caused by Fe3+ ions diffusion. To overcome the drawback, we firstly synthesized a kind of amphiphilic molecules with critical micelle concentration of 0.45 g/L and hydrophile‐lipophile balance value of 10, then prepared multiple emulsions by self‐assembling those molecules in Fricke solution under liquid paraffin, and finally obtained Fricke hydrogel embedded with the multiple emulsions. The diffusion coefficient of Fe3+ ions in the embedded Fricke hydrogel was measured to be 0.17 mm2/h. The hydrogel dosimeter exhibits considerable potential for use in dose verification applications.  相似文献   

8.
Water-in-oil-in-water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well-known problem for liquid oil-based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil-based double emulsion and a solid fat-based double emulsion. Water transport was assessed by low-resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2-relaxometry. The solid fat-based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces.  相似文献   

9.
酯化淀粉乳化剂制备的高效氯氟氰菊酯O/W乳液的稳定机制   总被引:3,自引:0,他引:3  
张源  商建  张小兵  刘峰 《应用化学》2012,29(3):332-339
通过测定辛烯基琥珀酸淀粉钠的用量、盐离子、pH值和温度等因素对油滴Zeta电位及表面吸附量的影响,分析了以酯化淀粉辛烯基琥珀酸淀粉钠为乳化剂制备的5%高效氯氟氰菊酯水乳剂的稳定机制.结果表明,辛烯基琥珀酸淀粉钠质量分数为7%时,Zeta电位达到最大值,油滴表面吸附量接近饱和;Na+、Mg2+和Al3+压缩油滴表面的双电层,降低Zeta电位,削弱静电排斥作用,增加辛烯基琥珀酸淀粉钠分子柔性,提高辛烯基琥珀酸淀粉钠表面吸附量,且随着Na+、Mg2、Al3+离子强度依次增大,压缩双电层能力依次增强,Zeta 电位降低和表面吸附量增加程度依次增大;pH值影响辛烯基琥珀酸淀粉钠在水中的解离,在碱性范围内解离出较多羧酸根,静电排斥力较大,Zeta电位较高,但表面吸附量有所降低;温度升高,辛烯基琥珀酸淀粉钠在水溶液中溶解度增大,呈舒展状态,且辛烯基琥珀酸淀粉钠从油滴表面逃逸的趋势增加,油滴表面Zeta电位和表面吸附量均随着温度升高而降低,在低温区差别不大,温度越高二者变化越明显.辛烯基琥珀酸淀粉钠通过吸附于油滴表面为其提供较强的静电斥力和空间位阻作用而维持O/W乳液稳定.  相似文献   

10.
O/W微乳液中聚苯胺超微粒子的制备   总被引:5,自引:0,他引:5  
选择合适的SDBS/苯胺/H2O三组分O/2微乳液与苯胺单体共存的两相体系,以单体相为单体源,在O/W厂组分微乳液中进行了苯胺聚合,所得聚苯胺粒子大小仅为3m,分布较均匀,且具有较好的导电性能。  相似文献   

11.
Curcumin is one of the most studied chemo-preventive agents, which may cause suppression, retardation, or inversion of carcinogenesis. But its application is currently limited because of its poor water-solubility and bioaccessibility. A curcumin O/W emulsion was prepared by high-pressure homogenization, using triglyceride monolaurate as an emulsifier and medium chain triglycerides (MCT) as the oil phase. The effects of emulsifiers, emulsifier concentration, oil type, oil-to-water ratio, and homogenization pressure and processing cycles on the physical stability and droplet size distribution of curcumin-encapsulated O/W emulsions were evaluated in this study. The results showed that the mean droplet size of the O/W emulsions remained remarkably stable during 60 days of storage under both light and dark conditions. Curcumin retentions in O/W emulsions after 60 days of storage under light and dark conditions were 97.9% and 81.6%, respectively. In addition, during the simulated gastrointestinal digestion process, the mean droplet size of the O/W emulsions increased from 260 nm to 2743 nm after incubation with simulated gastric fluid (SGF) for 24 h, while the mean droplet size remained unchanged after incubation with simulated intestinal fluid (SIF). The results displayed negligible changes in curcumin content during incubation with simulated gastrointestinal fluids, indicating that effective protection of curcumin was achieved by encapsulation in the O/W emulsion. It is expected that curcumin will acquire high bioaccessibility and bioavailability when the O/W emulsion is to be used in clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号