首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial reaction rates of the extraction of nickel(II) by 2-hydroxy-5-nonylacetophenone oxime (HNAPO) in a two-phase oil/water system was measured using a total internal reflectance static transfer cell. A two-step reaction mechanism between nickel(II) and HNAPO was found to satisfactorily explain the observed initial reaction rate (R(int)). The addition of neutral surfactants, nonionic octaethylene glycol mono-n-dodecyl ether and zwitterionic n-dodecyldimethyl-3-ammonio-1-propanesulfonate, decreased R(int), which could be accounted for with a competitive surface adsorption model. The presence of the anionic surfactant sodium dodecyl sulfate accelerated and then decelerated R(int), while the cationic surfactant dodecyltrimethylammonium chloride caused a decrease. The effects of these charged surfactants were accounted for using a combination of a competitive surface adsorption model and the Boltzmann distribution of charged species.  相似文献   

2.
3.
合成了几种具有刚性连接基团的双子表面活性剂,研究了它们在Rh-TPPTS体系中催化长链烯烃氢甲酰化反应中的助催化作用.结果表明,在水/有机两相催化体系中,新型双子表面活性剂的助催化作用比单链表面活性剂CTAB更好,在较低的表面活性剂浓度下能得到较高的反应转化率.这归因于此类表面活性剂有较低的cmc,降低界面张力的能力和对1-十二烯的增溶能力比CTAB更强.  相似文献   

4.
The effects of surfactant mixing on interfacial tension and on microemulsion formation were examined for systems of air/water and water/supercritical CO2 (scCO2) interfaces and for water/scCO2 microemulsions. A fluorinated surfactant, sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO)2), was mixed with the three hydrocarbon surfactants, Pluronic L31, Tergitol TMN-6, and decyltrimethylammonium chloride (DeTAC), at equimolar ratio. For all the cases, the interfacial tension was significantly lowered by the mixing. The positive synergistic effect suggests that the mixed surfactants tend to pack more closely on the interface than the pure constituents. It was found, however, that the microemulsion formation in scCO2 was never facilitated by the mixing, except for the case of TMN-6. This is probably due to the segregation of the surfactants into hydrocarbon-rich and fluorocarbon-rich phases on the microemulsion surface.  相似文献   

5.
Demulsification of water-in-crude oil emulsion was studied at two different salinities, 0.5% and 10% sodium chloride, using five different nonionic surfactants. Equilibrium crude oil-water interfacial tension was measured with drop volume method. Low molecular weight surfactants were found to be completely ineffective as demulsifiers. Three surfactants which were effective demulsifiers, exhibited good interfacial activity, surface adsorption and surface pressure. The performance of the demulsifiers changed with change in salinity of aqueous phase. Surfactants effective as demulsifiers reduced surface tension of water by more than 25 dynes-cm-1. For a given crude oil-water system, the surfactant which developed surface pressure in excess of 15 dynes-cm-1 was found to be good demulsifier for that system. Based upon these studies, a physical model of demulsification has been proposed  相似文献   

6.
Phase behavior was investigated for water/supercritical CO 2 (W/scCO2) microemulsions stabilized with sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO) 2) mixed with various guest surfactants. Only for the mixtures with fluorocarbon-hydrocarbon hybrid anionic surfactants (FC6-HC n), the maximum water-to-surfactant molar ratio (W0(c)) was larger than that estimated from linear interpolation of the W0(c) values for pure 8FS(EO) 2 and pure guest surfactant. Fourier transform infrared (FT-IR) measurement for the microemulsion revealed that the mixing of 8FS(EO) 2 with FC6-HC n can prevent a phase transition from the microemulsion to the liquid crystal even in the presence of excess water. It was also found from the measurement of water/scCO 2 interfacial tension that the area occupied per surfactant molecule was markedly increased by the mixing with FC6-HC n. The loose molecular packing, probably due to a microsegregation of 8FS(EO) 2 and FC6-HC n, is consistent with the enhanced stability of the microemulsion upon surfactant mixing.  相似文献   

7.
Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic–lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions.  相似文献   

8.
It is possible to obtain (excess) interfacial entropies from the temperature dependence of some characteristic surface parameter. Such excess entropies contain much valuable information. Their studies lead to deeper insight into the interfacial properties. In some cases, quite unexpected results are obtained. In the present paper, we shall consider three illustrations: (1) the surface excess entropy of the electrical double layer on silver iodide, (2) the surface excess entropy of the interface between air and electrolyte solutions and (3) the surface excess entropy of Langmuir polymeric monolayers. Their analysis starts with defining this characteristic parameter and measuring its temperature dependence, followed by a brief thermodynamic analysis to obtain the sought entropy.Given the generality of this methodology, its applicability is likely to be extended to a variety of other interfacial properties, in particular when competition between electric and non-electric forces plays a role as in self-assembly, hydrophobic bonding and polyelectrolytes.  相似文献   

9.
The stability and interactions in thin wetting films between the silica surface and air bubble containing (a) straight chain C10 amine and (b) cationic/anionic surfactant mixture of a straight chain C10 amine with sodium C8, C10 and (straight chain) C12 sulfonates, were studied using the microscopic thin wetting film method developed by Platikanov [D. Platikanov, J. Phys. Chem. 68 (1964) 3619]. Film lifetimes, three-phase contact (TPC) expansion rate, receding contact angles and surface tension were measured. The presence of the mixed cationic/anionic surfactants was found to lessen contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants heterocoagulation could arise through the formation of positively charged interfacial complexes. Mixed solution of cationic and anionic surfactants shows synergistic lowering in surface tension. The formation of the interfacial complex at the air/solution interface was confirmed by surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants system controls the strength of the interfacial complex. The observed phenomena were discussed in terms of the electrostatic heterocoagulation theory, where the interactions can be attractive or repulsive depending on the different surface activity and charge of the respective surfactants at the two interfaces.  相似文献   

10.
Natural surfactants from four crude oils have been extracted by adsorption on silica after precipitation of the asphaltenes by means of centrifugation or decantation. The extracted fractions have been characterized, analytically by FT-IR spectroscopy (chemical functions) and chromatography (molecular weight and polarity) and by their interfacial properties with emulsification and interfacial tension measurements on the model system water/decane with interfacially active fractions in different concentrations. The importance of these fractions (precipitated and adsorbed) on the stability of w/o emulsions is investigated. The influence of some extraction parameters (centrifugation or decantation, different adsorbents) on the nature and the emulsion behaviour of the fractions is studied and shows that the classification of the surfactants (asphaltenes, resins) is diffuse. It also shows that all the interfacially active constituents of the crude are interacting and are involved in the interfacial processes.  相似文献   

11.
Oxidation of ferrous orthophenanthroline (FeP) by peroxydiphosphate (PP) in aqueous medium at pH 1 was followed spectrophotometrically. Kinetic analysis has shown that oxidation occurs via the formation of an intermediate complex between FeP and PP. Equi-librium and rate constants were calculated. Influence of surfactants on the oxidation of FeP by PP was also Investigated. The equilibrium constant for complex formation was found to be higher in the presence of surfactants. The enhanced complex formation has been attributed to the ionic interactions between the charged surfactant and the ionic species in the reaction medium. Polymerization of HEMA initiated by the redox system,FeP/PP, was carried out in aqueous medium, under the conditions of excess reductant over oxidant and excess oxidant over reductant. The polymerization followed different mech-anisms under these conditions; with excess oxidant, the growing polymer radicals underwent oxidative termination, while with excess reductant, primary radical termination was pre-ferred. The effect of surfactants on the aqueous polymerization of HEMA using the redox system FeP/PP was also investigated. In addition to the decrease in rate, the polymerization followed a different mechanism in the presence of surfactants, the growing radicals ter-minated by mutual interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

13.
This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism.  相似文献   

14.
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.  相似文献   

15.
采用超声波辐照聚合的羧甲基纤维素 (CMC)系列高分子表面活性剂是由CMC嵌段和含有等长双亲性支链的嵌段构成的共聚物 ,研究结果表明 ,CMC链段保证了共聚物的增粘性能 ,双亲性嵌段提供了共聚物优良的表面活性 ;CMC增粘嵌段与表面活性嵌段作为共聚物的两个嵌段 ,各发挥其作用 ,得到既有增粘性能又有高表面活性的双亲性共聚物 .  相似文献   

16.
The interaction of pinacyanol (PIN), a cationic dye formed by monomer and dimer species, with three cationic surfactants (DTAB, TTAB, and HTAB) has been studied spectroscopically and by acid-base equilibrium in the micellar concentration range. In the presence of surfactants, the absorption maximum of the two main peaks undergoes bathochromic shifts. The spectral shifts suggest a hydrophobic environment of the chromophore. The presence of micelles favors the monomer species; i.e., it reduces the extent of dimerization. The pK(a) of PIN in micellar medium is similar to the value in pure water. When acid-base equilibrium was considered, the changes in the interfacial pK(a) allowed to us to determine the constant dielectric for the interfacial region (epsilon=69). This led to the conclusion that the dye must be solubilized between the solution and the hydrocarbon chain core, i.e., in the aqueous micellar interface. This location can be explained by a cation-pi interaction between the uncharged ring system of the dye and the cationic headgroups of the surfactants. Copyright 2001 Academic Press.  相似文献   

17.
Self-assembly of μm-to-mm components is important for achieving all-scale ordering with requirements of extra energy for motion and interaction of components. Marangoni flows caused by surfactants on water provide appropriate energy but have limited lifetimes because of the inevitable interfacial aggregation and difficult decomposition of aggregated covalent surfactants that inactivate Marangoni effects. Here we have synthesized a supra-amphiphile Marangoni “fuel”—sodium-4-(benzylideneamino) benzenesulfonate (SBBS)—that can be hydrolyzed in a timely manner to a species without surface activity to extend the motion time by 10-fold. The motion was optimized at pH=2 by a fine equilibrium between the releasing and removal of interfacial SBBS, leading to the self-assembly of millimeter-scaled ordered dimers. The underlying mechanism was interpreted by motion analyses and simulation. This strategy provides an active solution to self-assembly at the μm-to-mm scale, as well as interactive ideas between miniaturized chemical robots.  相似文献   

18.
The voltammetric determination of surfactants at the hanging mercury drop electrode in aqueous solutions is described, based on the shift of the peak potential deltaEp or the increase of the peak height deltaip of the electroreduction of hydrogen peroxide or of the second oxygen reduction step, with increasing concentration of surfactants. Although the selectivity of this method is rather limited, it could be utilized, e.g., for monitoring the absence (or presence) or for the determination of the contents of specified surfactants by comparing the obtained deltaip (deltaEp) signal with the reference state of the system or with that of a selected reference surface active substance. As model surfactants n-octanol, tetrabutylammonium chloride and sodium dodecylbenzenesulfonate were used, the regular adsorption behavior of which is well known. The method was successfully applied to control the presence of a commercial detergent in water for rinsing bottles for infusion solutions.  相似文献   

19.
With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D(0) = 0.8 x 10(-11) cm2/s without surfactants and D0 = 13.1 x 10(-11) cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency.  相似文献   

20.
The ion–dipole interaction between dodecyltrimethylammonium cations and nonionic surfactant molecules in adsorbed films and micelles was investigated by concentrating on the difference in the degree of counterion binding by employing dodecyltrimethylammonium chloride (DTAC)–octyl methyl sulfoxide (OMS) and dodecyltrimethylammonium bromide (DTAB)–OMS mixtures. The phase diagrams of adsorption and micelle formation were constructed and then the nonideal mixing of different species of surfactants was demonstrated in terms of the excess Gibbs free energies of adsorption and micelle formation, and the surface excess areas. Furthermore the dependence of them on the counterion was clearly shown. All these results were found to support our previous view that the direct interaction between surfactant cation and the dipole of the hydrophilic part of a nonionic surfactant is essential in cationic-nonionic surfactant mixtures, i.e., the DTAC system with a lower counterion biding has more negative excess thermodynamic quantities than the DTAB system with a higher one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号