首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present a comparative study of the metal-metal interaction effect on the static quadratic hyperpolarizabilities of two typical dinuclear rhenium clusters. The electronic structures, excitation spectra, dipolar moments, static polarizabilities, and quadratic hyperpolarizabilities of the two complexes with direct metal-metal interactions have been computed and analyzed with the use of high-level DFT/TDDFT methods. The geometries and the first intense excitations agree with the relevant reported measurements. The orbital decomposition scheme ( J. Phys. Chem. A 2006, 110, 1014-1021) has been applied to analyze the relationship between the electronic structures and nonlinear optical (NLO) properties of these two complexes. We propose an unprecedented NLO response mechanism featuring the contribution of the direct metal-metal interaction transition process in these dinuclear rhenium complexes. This contribution positively enhances the quadratic hyperpolarizability and relates to the intensity of the metal-metal interactions of the complexes. The results are helpful to the development of NLO chromophores in polynuclear metal clusters through the molecular design technique.  相似文献   

2.
Cotton FA  Feng X 《Inorganic chemistry》1996,35(17):4921-4925
Electronic structures of the title complexes have been studied using quantum chemical computations by different methods. It is shown that the results of Xalpha calculations agree well with expectations from classical ligand-field theory, but both are far from being in agreement with the results given by ab initio calculations. The HOMO in the ab initio Hartree-Fock molecular orbital diagrams of all these complexes is a chalcogen p(pi) lone pair orbital rather than the metal nonbonding d(xy)() orbital previously proposed. Electronic transition energies were calculated by CASSCF and CI methods. The results suggest that in the cases when Q = S, Se, and Te the lowest energy transitions should be those from the p(pi) lone pair orbitals to the metal-chalcogen pi orbitals. The calculated and observed electronic spectra of the oxo complex are in good agreement and very different from the spectra of the other complexes, and the lowest absorptions were accordingly assigned to transitions of different origins.  相似文献   

3.
Bis(benzofuranonyl)methanolate (BM4i4i) dye and croconate dyes (derivatives of oxyallyl molecules) in general are known to have intense transitions in the near-infrared (NIR) region, indicating small transition energies and large transition dipole moments. These molecules have been reported in the literature to have very large resonant third-order nonlinear optical (NLO) susceptibilities and molecular hyperpolarizabilities (gamma). In this work we investigate using density functional theory (DFT)/ab initio/symmetry adapted cluster-configuration interaction (SAC-CI) techniques the oxyallyl substructure and attribute the NIR transition and the NLO activity to this substructure, which is common in all these molecules. Using valence bond (VB) theory, an analysis of a three-state model of this substructure is carried out. It is seen that the mixture of an intermediate diradical character and some zwitterionic character in the molecule and a large coupling between these two VB resonance forms is responsible for large gamma values. This can be used as a design principle for increasing NLO activity in oxyallyl derivatives.  相似文献   

4.
Molybdenum-oxo ions of the type [Mo(IV)OL(4)Cl](+) (L = CNBu(t), PMe(3), (1)/(2)Me(2)PCH(2)CH(2)PMe(2)) have been studied by X-ray crystallography, vibrational spectroscopy, and polarized single-crystal electronic absorption spectroscopy (300 and ca. 20 K) in order to investigate the effects of the ancillary ligand geometry on the properties of the MotriplebondO bond. The idealized point symmetries of the [Mo(IV)OL(4)Cl](+) ions were established by X-ray crystallographic studies of the salts [MoO(CNBu(t)())(4)Cl][BPh(4)] (C(4)(v)), [MoO(dmpe)(2)Cl]Cl.5H(2)O (C(2)(v)), and [MoO(PMe(3))(4)Cl][PF(6)] (C(2)(v)()); the lower symmetries of the phosphine derivatives are the result of the steric properties of the phosphine ligands. The Motbd1;O stretching frequencies of these ions (948-959 cm(-)(1)) are essentially insensitive to the nature and geometry of the equatorial ligands. In contrast, the electronic absorption bands arising from the nominal d(xy)() --> d(xz), d(yz) (n --> pi(MoO)) ligand-field transition exhibit a large dependence on the geometry of the equatorial ligands. Specifically, the electronic spectrum of [MoO(CNBu(t)())(4)Cl](+) exhibits a single (1)[n --> pi(xz)(,)(yz)] band, whereas the spectra of both [MoO(dmpe)(2)Cl](+) and [MoO(PMe(3))(4)Cl](+) reveal separate (1)[n --> pi(xz)] and (1)[n --> pi(yz)] bands. A general theoretical model of the n --> pi state energies of structurally distorted d(2) M(triplebondE)L(4)X chromophores is developed in order to interpret the electronic spectra of the phosphine derivatives. Analysis of the n --> pi transition energies using this model indicates that the d(xz) and d(yz) pi(MotriplebondO) orbitals are nondegenerate for the C(2)(v)-symmetry ions and the n --> pi(xz) and n --> pi(yz) excited states are characterized by different two-electron terms. These effects lead to a significant redistribution of intensity between certain spin-allowed and spin-forbidden absorption bands. The applicability of this model to the excited states produced by delta --> pi and pi --> delta symmetry electronic transitions of other chromophores is discussed.  相似文献   

5.
Organometallic actinide bis(ketimide) complexes (C5Me5)2An[-N=C(Ph)(R)]2 (where R = Ph, Me, and CH2Ph) of thorium(IV) and uranium(IV) have recently been synthesized that exhibit chemical, structural, and spectroscopic (UV-Visible, resonance-enhanced Raman) evidence for unusual actinide-ligand bonding. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682; Jantunen et al., Organometallics, 2004, 23, 4682; Morris et al., Organometallics, 2004, 23, 5142.] Similar evidence has been observed for the group 4 analogue (C5H5)2Zr[-N=CPh2]2. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.] These compounds have important implications for the development of new heavy-element systems that possess novel electronic and magnetic properties. Here, we have investigated M-ketimido bonding (M = Th, U, Zr), as well as the spectroscopic properties of the highly colored bis-ketimido complexes, using density functional theory (DFT). Photoelectron spectroscopy (PES) has been used to experimentally elucidate the ground-state electronic structure of the thorium and uranium systems. Careful examination of the ground-state electronic structure, as well as a detailed modeling of the photoelectron spectra, reveals similar bonding interactions between the thorium and uranium compounds. Using time-dependent DFT (TDDFT), we have assigned the bands in the previously reported UV-Visible spectra for (C5Me5)2Th[-N=CPh2]2, (C5Me5)2U[-N=CPh2]2, and (C5H5)2Zr[-N=CPh2]2. The low-energy transitions are attributed to ligand-localized N p --> C=N pi excitations. These excited states may be either localized on a single ketimido unit or may be of the ligand-ligand charge-transfer type. Higher-energy transitions are cyclopentadienyl pi --> CN pi or cyclopentadienyl pi --> phenyl pi in character. The lowest-energy excitation in the (C5Me5)2U[-N=Ph2]2 compound is attributed to f-f and metal-ligand charge-transfer transitions that are not available in the thorium and zirconium analogues. Geometry optimization and vibrational analysis of the lowest-energy triplet state of the zirconium and thorium compounds also aids in the assignment and understanding of the resonance-enhanced Raman data that has recently been reported. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.].  相似文献   

6.
The first hyperpolarizability of two tungsten-carbonyl complexes, tungsten pentacarbonyl pyridine and tungsten pentacarbonyl trans-1,2-bis(4-pyridyl)-ethylene, has been studied by the high-level TDDFT method. The consideration of the solvent effect and intermolecular pi-pi weak interaction in the calculations quantitatively improve the final result of both the electronic excitations and the first hyperpolarizabilities. By using the orbital decomposition scheme (J. Phys. Chem. A 2006, 110, 1014-1021), the NLO mechanisms of these two complexes have been ascribed to the dominant contribution from the metal-to-ligand charge transfer, with HOMO --> LUMO character, and the indispensable contribution from the intraligand charge transfer as well. A supplementary formula has been proposed to implement the orbital-pair transition analysis. This study reports the significant influences of solvation and intermolecular interactions on the first hyperpolarizabilities of organometallic NLO chromophores.  相似文献   

7.
An ab initio study of the effect on nonlinear optical (NLO) properties of medium-size polymethineimine (PMI) chains caused by doping with an alkali metal atom along the backbone is presented. Both the electronic and (preliminary) vibrational static first hyperpolarizabilities are investigated. Doping leads to the injection of an excess electron into the PMI chain, which is accompanied by major enhancement of its NLO response. Along with the hyperpolarizability, other electronic and structural properties depend strongly upon the position of doping along the chain. The vibrational contribution is larger than the corresponding electronic one for most of the cases studied.  相似文献   

8.
The synthesis, characterization, and two-dimensional second-order nonlinear optical (NLO) response of a dipolar NiII donor- acceptor Schiff base complex and the related ligand are reported. Electric-field-induced second-harmonic generation and harmonic light (hyper-Rayleigh) scattering techniques, in combination with INDO/SCI-SOS theoretical calculations, were used to investigate the vector part of the hyperpolarizability tensor and the two-dimensional character of the molecular nonlinearity, respectively. Off-diagonal hyperpolarizability tensors can be related to charge-transfer transitions that are polarized perpendicular to the molecular dipolar axis, while parallel transitions account for the diagonal hyperpolarizability tensor. The role of the metal center in enhancing the two-dimensional NLO response of such molecules is twofold since it acts both as the donor and the bridging moiety of the planar donor-(pi-conjugate-bridge)-acceptor system. These dipolar two-dimensional molecules are interesting candidates from the perspective of polarization-independent NLO materials.  相似文献   

9.
In this article, we describe a series of new complex salts in which electron-rich transition-metal centers are coordinated to three electron-accepting N-methyl/aryl-2,2':4,4' ':4',4' '-quaterpyridinium ligands. These complexes contain either Ru(II) or Fe(II) ions and have been characterized by using various techniques, including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer bands. The latter experiments reveal that these putatively octupolar D(3) chromophores exhibit two substantial components of the beta tensor which are associated with transitions to dipolar excited states. Computations involving time-dependent density-functional theory and the finite field method serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts.  相似文献   

10.
In this article, we contrast the optical properties of dipolar chromophores having 4-(dimethylamino)phenyl electron donor (D) and pyridinium acceptor (A) groups with those of closely related cations having pyridyl-coordinated Ru(II) donors. A range of physical data, including that from Stark (electroabsorption) spectroscopy, permits unprecedented quantitative comparisons, most notably regarding the effects of extension of bridging polyene chains. The purely organic compounds display normal optical properties in that their intense, visible pi --> pi intramolecular charge-transfer (ICT) bands red-shift as the number of E-ethylene units (n) increases from 1 to 3 and the associated static first hyperpolarizabilities beta(0) increase steadily with n. The related Ru(II) complexes show intense, visible d --> pi metal-to-ligand charge-transfer (MLCT) bands, which are found to lower energy when compared with the ICT transitions of the corresponding organics. Abnormally, these MLCT bands blue-shift as n increases, and beta(0) maximizes at n = 2. Time-dependent density-functional theory and finite field calculations verify these empirical trends for both types of compound, which can be rationalized as arising from the differing orbital structures of the chromophores and the associated degrees of D-A electronic coupling.  相似文献   

11.
By highly correlated ab initio methods and DFT calculations, we have shown that alkaline metals can stabilize planar tetracoordinate carbon-containing molecules with the C(C4) skeleton. This family of molecules is C5M2, where M is an alkaline metal. The stability of these compounds is rationalized in terms of the delocalization of the p-orbital perpendicular to the molecular plane, the global hardness, and the electrophilicity. The analysis of several molecular scalar fields shows that the bonding between the C52- dianion and the metals is strongly ionic. The structures reported are the first examples with a planar tetracoordinate carbon, surrounded by carbon atoms, and stabilized, only, by electronic factors.  相似文献   

12.
This review is focused on theoretical aspects of mixed diimine–dithiolate complexes by means of DFT and TD-DFT methods. Thus, the geometry, the character of charge-transfer transitions and excited states in a series of M(diimine)(dithiolate), where M = Ni, Pd and Pt, is examined by DFT and TD-DFT techniques combined with polarized continuum model. The theoretical calculations reveal not only the role of the ligands – namely diimine and dithiolato and their substituents – but also the role of the metal in the excited triplet and singlet states and as a consequence in the properties of these complexes (electronic and photophysics) and their potential use as photosensitizers, NLO materials, light energy conversion materials and biological agents. The calculated energies of the lowest triplet and singlet state in all these complexes are in good agreement with absorption spectra and luminescence studies—where they are available. The contribution of the metal in the chemical and photophysics properties of this class of compounds is also demonstrated by two indices derived by DFT techniques: NICS (for chemical) and Fukui functions (for chemical and photophysical properties). The former acts as a meter of the delocalization of these molecules whereas the latter identifies the reactive centres of the molecule. All the theoretical results are in accordance with the experimental ones—geometrical structures, absorption, luminescence and 1H NMR spectra as well as products of given reactions, indicating the applicability of the DFT and TD-DFT techniques in examining the properties of metal coordinated complexes especially in a series of the same class of compounds.  相似文献   

13.
The ground-state dipole moments and second-order nonlinear optical (NLO) properties of a series of one-dimensional (1D) chromophores with donor-bridge-acceptor (D-B-A) structures have been investigated by using the second-order MФller-Plesset (MP2) and density functional theory (DFT) methods with the basis set of 6-31+G(d). According to the calculated results, the relationship between the molecular static first hyperpolarizability (βμ) and the directions of electron transition has been summarized. In terms of the sign of βμ, these 1D organic chromophores were classified into two categories: type Ⅰ with negative βμ and type Ⅱ bearing positive βμ. The analyses show that the remarkable difference of the first hyperpolarizabilities between Ⅰ and Ⅱ chromophores is associated mainly with the electrostatic interaction between terminal groups and the transport electrons in excited states. Moreover, different from the popular viewpoint, the obtained results also show that most of this series of 1D D-B-A molecules are more charge-separated in the ground states than in the excited states. As a whole, this theoretical investigation, to some extent, can be considered as a useful reference in designing the NLO chromophores with large first hyperpolarizabilities.  相似文献   

14.
In this article, we describe a series of complex salts in which electron-rich {Fe(II)(CN)(5)}(3)(-) centers are coordinated to pyridyl ligands with electron-accepting N-methyl/aryl-pyridinium substituents. These compounds have been characterized by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering (HRS) at 1064 nm, and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands. The relatively large static first hyperpolarizabilities, beta(0), increase markedly on moving from aqueous to methanol solutions, accompanied by large red-shifts in the MLCT transitions. Acidification of aqueous solutions allows reversible switching of the linear and NLO properties, as shown via both HRS and Stark experiments. Time-dependent density functional theory and finite field calculations using a polarizable continuum model yield relatively good agreement with the experimental results and confirm the large decrease in beta(0) on protonation. The Stark-derived beta(0) values are generally larger for related {Ru(II)(NH(3))(5)}(2+) complexes than for their {Fe(II)(CN)(5)}(3)(-) analogues, consistent with the HRS data in water. However, the HRS data in methanol show that the stronger solvatochromism of the Fe(II) complexes causes their NLO responses to surpass those of their Ru(II) counterparts upon changing the solvent medium.  相似文献   

15.
A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).  相似文献   

16.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

17.
N,N'-(2-Hydroxy-propane-1,3-diyl)-bis(5-nitrosalicylaldiminato-N,O)-copper(II) has been synthesized. The crystal structure has been determined by X-ray diffraction analysis, and linear optical characterization has been determined by UV-vis spectroscopy. It was found that the molecule under investigation has solvatochromic behaviour in the UV region, implying non-zero microscopic first hyperpolarizability. To reveal the microscopic nonlinear optical (NLO) properties, the static first hyperpolarizabilities (beta) and the electric dipole moments (mu) were evaluated by using the ab initio finite field (FF) method. According to the results of the FF calculations, the synthesized compound exhibits non-zero beta values, and it might have microscopic NLO behaviour.  相似文献   

18.
By means of ab initio HF and DFT B3LYP methods, the structure of Gaq3 (q = 8-hydroxyquinoline) was optimized. The frontier molecular orbital characteristics and energy levels of Gaq3 have been analyzed systematically in order to study the electronic transition mechanism in Gaq3. Three derivatives of Gaq3 and their polymers were designed and the possibilities that they were employed as luminescent materials were discussed. The regularities and characteristic of energy bands of Gaq3 and its derivatives were also investigated. The results show that the electronic π-π* transitions in Gaq3 are localized on the quinolate ligands. The emission of Gaq3 is due to the electron transitions from a phenoxide donor to a pyridyl acceptor. Two possible electron transfer pathways are presented, one by carbon atoms, and the other via metal cation Ga3 . The derivatives of Gaq3 may possess high luminescence efficiency.  相似文献   

19.
Two new classes of (HCN)(n)...Li and Li...(HCN)(n) (n = 1, 2, 3) clusters with the electride characteristic are formed in theory by the metal Li atom attaching to the (HCN)(n) (n = 1, 2, 3) clusters. Because of the interaction between the Li atom and the (HCN)(n) part, the 2s valence electron of the Li atom becomes a loosely bound excess electron. Our high-level ab initio calculations show that these new clusters with the excess electron have large first hyperpolarizabilities, for example, beta(0) = -15,258 au for (HCN)...Li and beta(0) = -3401 au for Li...(HCN) at the QCISD/6-311++G(3df,3pd) level (only beta(0) = -2.8 au for HCN monomer(26)). Obviously, the excess electron from the Li atom plays a crucial role in the large first hyperpolarizabilities of these clusters. The beta(0) value of (HCN)(n)...Li (beta(0) > 10(4) au, from sigma --> pi* transition) is larger than that of Li...(HCN)(n) (beta(0) > 10(3) au, from sigma --> sigma* transition) for n = 1, 2, or 3. In addition, two interesting rules have been observed. They are that |beta(0)| decreases with lengthening of the HCN chain for (HCN)(n)...Li clusters and that |beta(0)| increases as n increases for Li...(HCN)(n) clusters. In this paper, we discuss two classes of clusters that are highly similar to the electride structure model, of which the structural characteristics are that alkali metal atoms ionize to form cations and trapped electrons under the action of other polar molecules. Thus, the investigation on the large first hyperpolarizabilities of (HCN)(n)...Li and Li...(HCN)(n) (n = 1, 2, 3) may prompt one to study the unusual nonlinear optical responses of some electrides.  相似文献   

20.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号