首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
Non-specific chemical modification of protein thiol groups continues to be a significant source of false positive hits from high-throughput screening campaigns and can even plague certain protein targets and chemical series well into lead optimization. While experimental tools exist to assess the risk and promiscuity associated with the chemical reactivity of existing compounds, computational tools are desired that can reliably identify substructures that are associated with chemical reactivity to aid in triage of HTS hit lists, external compound purchases, and library design. Here we describe a Bayesian classification model derived from more than 8,800 compounds that have been experimentally assessed for their potential to covalently modify protein targets. The resulting model can be implemented in the large-scale assessment of compound libraries for purchase or design. In addition, the individual substructures identified as highly reactive in the model can be used as look-up tables to guide chemists during hit-to-lead and lead optimization campaigns.  相似文献   

2.
3.
The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most probable CMMM for the chosen mesoscopic time step. We applied this method of Markov model construction to several toy systems (random walks in one and two dimensions) as well as the dynamics of alanine dipeptide in water. The resulting Markov state models were indeed successful in capturing the dynamics of our test systems on a variety of mesoscopic time-scales.  相似文献   

4.
5.
The optimization of multistep chemical syntheses is critical for the rapid development of new pharmaceuticals. However, concatenating individually optimized reactions can lead to inefficient multistep syntheses, owing to chemical interdependencies between the steps. Herein, we develop an automated continuous flow platform for the simultaneous optimization of telescoped reactions. Our approach is applied to a Heck cyclization-deprotection reaction sequence, used in the synthesis of a precursor for 1-methyltetrahydroisoquinoline C5 functionalization. A simple method for multipoint sampling with a single online HPLC instrument was designed, enabling accurate quantification of each reaction, and an in-depth understanding of the reaction pathways. Notably, integration of Bayesian optimization techniques identified an 81 % overall yield in just 14 h, and revealed a favorable competing pathway for formation of the desired product.  相似文献   

6.
Many of the conventional similarity methods assume that molecular fragments that do not relate to biological activity carry the same weight as the important ones. One possible approach to this problem is to use the Bayesian inference network (BIN), which models molecules and reference structures as probabilistic inference networks. The relationships between molecules and reference structures in the Bayesian network are encoded using a set of conditional probability distributions, which can be estimated by the fragment weighting function, a function of the frequencies of the fragments in the molecule or the reference structure as well as throughout the collection. The weighting function combines one or more fragment weighting schemes. In this paper, we have investigated five different weighting functions and present a new fragment weighting scheme. Later on, these functions were modified to combine the new weighting scheme. Simulated virtual screening experiments with the MDL Drug Data Report (23) and maximum unbiased validation data sets show that the use of new weighting scheme can provide significantly more effective screening when compared with the use of current weighting schemes.  相似文献   

7.
This paper presents a Bayesian approach to the development of spectroscopic calibration models. By formulating the linear regression in a probabilistic framework, a Bayesian linear regression model is derived, and a specific optimization method, i.e. Bayesian evidence approximation, is utilized to estimate the model “hyper-parameters”. The relation of the proposed approach to the calibration models in the literature is discussed, including ridge regression and Gaussian process model. The Bayesian model may be modified for the calibration of multivariate response variables. Furthermore, a variable selection strategy is implemented within the Bayesian framework, the motivation being that the predictive performance may be improved by selecting a subset of the most informative spectral variables. The Bayesian calibration models are applied to two spectroscopic data sets, and they demonstrate improved prediction results in comparison with the benchmark method of partial least squares.  相似文献   

8.
As discussed in the companion paper [J. B. Witkoskie and J. S. Cao, J. Chem. Phys. 121, 6361 (2004), preceding paper], quantitative extraction of information from single molecule experiments by several proposed indicators is difficult since the experiments only observe certain characteristics of the system, even though the indicators can contain all available information. This paper shows how one can circumvent the shortcomings of these indicators by combining information extracted from indicators with a numerical Bayesian statistical approach. The Bayesian approach determines the relative probability of various models reproducing the entire sequence of the single molecules trajectory, instead of binning and averaging over the data, which removes much of this information.  相似文献   

9.
Chemical inhibitors have had a profound impact on many diverse fields of biology. The goal of chemical genetics is to use small molecules to perturb biological systems in a manner conceptually similar to traditional genetics. Key to the advancement of the chemical genetic paradigm is the further development of tools and approaches for the identification of the protein targets of active compounds identified in chemical genetic screens. This review will address historic examples in which forward chemical genetics yielded new insight into a biological problem through successful identification of the target of an active molecule. The approaches covered have been grouped into two broad classes: target identification by affinity-based methods and target identification by deduction. Strengths and shortcomings of each approach as it pertains to their application to modern chemical genetics will be discussed. Finally, a series of new genomic and proteomic-based techniques for target identification will be described. Although a truly general approach to target identification has yet to be developed, these examples illustrate that there are many effective strategies for successfully elucidating the biological targets of active small molecules.  相似文献   

10.
11.
Metabolic stability is an important property of drug molecules that should-optimally-be taken into account early on in the drug design process. Along with numerous medium- or high-throughput assays being implemented in early drug discovery, a prediction tool for this property could be of high value. However, metabolic stability is inherently difficult to predict, and no commercial tools are available for this purpose. In this work, we present a machine learning approach to predicting metabolic stability that is tailored to compounds from the drug development process at Bayer Schering Pharma. For four different in vitro assays, we develop Bayesian classification models to predict the probability of a compound being metabolically stable. The chosen approach implicitly takes the "domain of applicability" into account. The developed models were validated on recent project data at Bayer Schering Pharma, showing that the predictions are highly accurate and the domain of applicability is estimated correctly. Furthermore, we evaluate the modeling method on a set of publicly available data.  相似文献   

12.
A concept termed Emerging Chemical Patterns (ECPs) is introduced as a novel approach to molecular classification. The methodology makes it possible to extract key molecular features from very few known active compounds and classify molecules according to different potency levels. The approach was developed in light of the situation often faced during the early stages of lead optimization efforts: too few active reference molecules are available to build computational models for the prediction of potent compounds. The ECP method generates high-resolution signatures of active compounds. Predictive ECP models can be built based on the information provided by sets of only three molecules with potency in the nanomolar and micromolar range. In addition to individual compound predictions, an iterative ECP scheme has been designed. When applied to different sets of active molecules, iterative ECP classification produced compound selection sets with increases in average potency of up to 3 orders of magnitude.  相似文献   

13.
This paper is aimed at understanding what happens to the propensity functions (rates) of bimolecular chemical reactions when the volume occupied by the reactant molecules is not negligible compared to the containing volume of the system. For simplicity our analysis focuses on a one-dimensional gas of N hard-rod molecules, each of length l. Assuming these molecules are distributed randomly and uniformly inside the real interval [0,L] in a nonoverlapping way, and that they have Maxwellian distributed velocities, the authors derive an expression for the probability that two rods will collide in the next infinitesimal time dt. This probability controls the rate of any chemical reaction whose occurrence is initiated by such a collision. The result turns out to be a simple generalization of the well-known result for the point molecule case l=0: the system volume L in the formula for the propensity function in the point molecule case gets replaced by the "free volume" L-Nl. They confirm the result in a series of one-dimensional molecular dynamics simulations. Some possible wider implications of this result are discussed.  相似文献   

14.
15.
16.
17.
18.
Fragment-based drug design has emerged as an important methodology for lead discovery and drug design. Different with other studies focused on fragment library design and active fragment identification, a fragment-based strategy was developed in combination with three-dimensional quantitative structure–activity relationship (3D-QSAR) for structural optimization in this study. Based on a validated scaffold or fragment hit, a series of structural optimization was conducted to convert it to lead compounds, including 3D-QSAR modelling, active site analysis, fragment-based structural optimization and evaluation of new molecules. 3D-QSAR models and active site analysis provided sufficient information for confirming the SAR and pharmacophoric features for fragments. This strategy was evaluated through the structural optimization on a c-Met inhibitor scaffold 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one, which resulted in an c-Met inhibitor with high inhibitory activity. Our study suggested the effectiveness of this fragment-based strategy and the druggability of our newly explored active region. The reliability of this strategy indicated it could also be applied to facilitate lead optimization of other targets.  相似文献   

19.
The initial polymerization reactions in particle forming Ar/He/C 2H 2 plasmas are studied using molecular beam mass spectrometry (MBMS). The measured mass spectra are disentangled and quantified with the help of Bayesian probability theory. This approach uses the measured mass spectra and the cracking patterns (CPs) of the species that are formed in the plasma as the main input parameter. The CPs are either taken from calibration measurements or the NIST database or estimated based on a comparison to CPs of similar molecules. These estimated CPs are then modified by Bayesian analysis to fit the measured data. The CPs of C 6H 2, C 6H 4, and C 8H 2, which are not available in the NIST database, are determined in this way and can serve as good estimation until precise data is published. The temporal evolution after plasma ignition of the densities of in total 22 species (hydrocarbons, noble gases, and impurities) are quantified and expressed as partial pressures. The most abundant products in our plasma are C 4H 2 and C 6H 2 molecules with maximum partial pressures of 0.1 and 0.013 Pa, respectively. Our quantitative data can be used to validate plasma chemistry models. First comparison is made to a plasma chemistry model of similar C 2H 2 plasma already available in the literature. The comparison indicates that dissociative electron attachment to C 2 n H 2 ( n > 1) molecules is a dominant source of negative ions in C 2H 2 plasmas. Additionally, the C 2H 4 has been identified as a precursor for C n H 4 molecules.  相似文献   

20.
Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号