首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The k-planar crossing number of a graph is the minimum number of crossings of its edges over all possible drawings of the graph in k planes. We propose algorithms and methods for k-planar drawings of general graphs together with lower bound techniques. We give exact results for the k-planar crossing number of K2k+1,q, for k?2. We prove tight bounds for complete graphs. We also study the rectilinear k-planar crossing number.  相似文献   

3.
To a set of n points in the plane, one can associate a graph that has less than n2 vertices and has the property that k-cliques in the graph correspond vertex sets of convex k-gons in the point set. We prove an upper bound of 2k-1 on the size of a planar point set for which the graph has chromatic number k, matching the bound conjectured by Szekeres for the clique number. Constructions of Erd?s and Szekeres are shown to yield graphs that have very low chromatic number. The constructions are carried out in the context of pseudoline arrangements.  相似文献   

4.
Erd?s conjectured that if G is a triangle free graph of chromatic number at least k≥3, then it contains an odd cycle of length at least k 2?o(1) [13,15]. Nothing better than a linear bound ([3], Problem 5.1.55 in [16]) was so far known. We make progress on this conjecture by showing that G contains an odd cycle of length at least Ω(k log logk). Erd?s’ conjecture is known to hold for graphs with girth at least five. We show that if a graph with girth four is C 5 free, then Erd?s’ conjecture holds. When the number of vertices is not too large we can prove better bounds on χ. We also give bounds on the chromatic number of graphs with at most r cycles of length 1 mod k, or at most s cycles of length 2 mod k, or no cycles of length 3 mod k. Our techniques essentially consist of using a depth first search tree to decompose the graph into ordered paths, which are then fed to an online coloring algorithm. Using this technique we give simple proofs of some old results, and also obtain several other results. We also obtain a lower bound on the number of colors which an online coloring algorithm needs to use to color triangle free graphs.  相似文献   

5.
We construct three new infinite families of hypohamiltonian graphs having respectively 3k+1 vertices (k?3), 3k vertices (k?5) and 5k vertices (k?4); in particular, we exhibit a hypohamiltonian graph of order 19 and a cubic hypohamiltonian graph of order 20, the existence of which was still in doubt. Using these families, we get a lower bound for the number of non-isomorphic hypohamiltonian graphs of order 3k and 5k. We also give an example of an infinite graph G having no two-way infinite hamiltonian path, but in which every vertex-deleted subgraph G - x has such a path.  相似文献   

6.
The excess of a graph G is defined as the minimum number of edges that must be deleted from G in order to get a forest. We prove that every graph with excess at most k has chromatic number at most and that this bound is tight. Moreover, we prove that the oriented chromatic number of any graph with excess k is at most k+3, except for graphs having excess 1 and containing a directed cycle on 5 vertices which have oriented chromatic number 5. This bound is tight for k?4.  相似文献   

7.
In 1973, P. Erdös conjectured that for eachkε2, there exists a constantc k so that ifG is a graph onn vertices andG has no odd cycle with length less thanc k n 1/k , then the chromatic number ofG is at mostk+1. Constructions due to Lovász and Schriver show thatc k , if it exists, must be at least 1. In this paper we settle Erdös’ conjecture in the affirmative. We actually prove a stronger result which provides an upper bound on the chromatic number of a graph in which we have a bound on the chromatic number of subgraphs with small diameter.  相似文献   

8.
We study properties of the sets of minimal forbidden minors for the families of graphs having a vertex cover of size at most k. We denote this set by O(k-VERTEX COVER) and call it the set of obstructions. Our main result is to give a tight vertex bound of O(k-VERTEX COVER), and then confirm a conjecture made by Liu Xiong that there is a unique connected obstruction with maximum number of vertices for k-VERTEX COVER and this graph is C2k+1. We also find two iterative methods to generate graphs in O((k+1)-VERTEX COVER) from any graph in O(k-VERTEX COVER).  相似文献   

9.
We present an O(mn) algorithm to determine whether a graph G with m edges and n vertices has an odd cycle transversal of order at most k, for any fixed k. We also obtain an algorithm that determines, in the same time, whether a graph has a half integral packing of odd cycles of weight k.  相似文献   

10.
The reinforcement number of a graph is the smallest number of edges that have to be added to a graph to reduce the domination number. We introduce the k-reinforcement number of a graph as the smallest number of edges that have to be added to a graph to reduce the domination number by k. We present an O(k2n) dynamic programming algorithm for computing the maximum number of vertices that can be dominated using γ(G)-k dominators for trees. A corollary of this is a linear-time algorithm for computing the k-reinforcement number of a tree. We also discuss extensions and related problems.  相似文献   

11.
The well-known theorem of Erd?s-Pósa says that a graph G has either k disjoint cycles or a vertex set X of order at most f(k) for some function f such that G\X is a forest. Starting with this result, there are many results concerning packing and covering cycles in graph theory and combinatorial optimization. In this paper, we discuss packing disjoint S-cycles, i.e., cycles that are required to go through a set S of vertices. For this problem, Kakimura-Kawarabayashi-Marx (2011) and Pontecorvi-Wollan (2010) recently showed the Erd?s-Pósa-type result holds. We further try to generalize this result to packing S-cycles of odd length. In contrast to packing S-cycles, the Erd?s-Pósa-type result does not hold for packing odd S-cycles. We then relax packing odd S-cycles to half-integral packing, and show the Erd?s-Pósa-type result for the half-integral packing of odd S-cycles, which is a generalization of Reed (1999) when S=V. That is, we show that given an integer k and a vertex set S, a graph G has either 2k odd S-cycles so that each vertex is in at most two of these cycles, or a vertex set X of order at most f(k) (for some function f) such that G\X has no odd S-cycle.  相似文献   

12.
A graph is planar if it can be embedded on the plane without edge-crossings. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented triangle-free planar graph has an oriented chromatic number at most 40, that improves the previous known bound of 47 [Borodin, O. V. and Ivanova, A. O., An oriented colouring of planar graphs with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239–249, 2005]. We also prove that every oriented 2-outerplanar graph has an oriented chromatic number at most 40, that improves the previous known bound of 67 [Esperet, L. and Ochem, P. Oriented colouring of 2-outerplanar graphs, Inform. Process. Lett., vol. 101(5), 215–219, 2007].  相似文献   

13.
A k-colouring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclic k-colourings such that each colour class induces a graph with a given(hereditary) property. In particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with Δ(G) 4 can be acyclically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.  相似文献   

14.
We introduce the incidence game chromatic number which unifies the ideas of game chromatic number and incidence coloring number of an undirected graph. For k-degenerate graphs with maximum degree Δ, the upper bound 2Δ+4k−2 for the incidence game chromatic number is given. If Δ≥5k, we improve this bound to the value 2Δ+3k−1. We also determine the exact incidence game chromatic number of cycles, stars and sufficiently large wheels and obtain the lower bound for the incidence game chromatic number of graphs of maximum degree Δ.  相似文献   

15.
Recently Alon and Friedland have shown that graphs which are the union of complete regular bipartite graphs have the maximum number of 1-factors over all graphs with the same degree sequence. We identify two families of graphs that have the maximum number of 1-factors over all graphs with the same number of vertices and edges: the almost regular graphs which are unions of complete regular bipartite graphs, and complete graphs with a matching removed. The first family is determined using the Alon and Friedland bound. For the second family, we show that a graph transformation which is known to increase network reliability also increases the number of 1-factors. In fact, more is true: this graph transformation increases the number of k-factors for all k≥1, and “in reverse” also shows that in general, threshold graphs have the fewest k-factors. We are then able to determine precisely which threshold graphs have the fewest 1-factors. We conjecture that the same graphs have the fewest k-factors for all k≥2 as well.  相似文献   

16.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected non-complete graph with no k-contractible edge, is called contraction critical k-connected. An edge of a k-connected graph is called trivially noncontractible if its two end vertices have a common neighbor of degree k. Ando [K. Ando, Trivially noncontractible edges in a contraction critically 5-connected graph, Discrete Math. 293 (2005) 61-72] proved that a contraction critical 5-connected graph on n vertices has at least n/2 trivially noncontractible edges. Li [Xiangjun Li, Some results about the contractible edge and the domination number of graphs, Guilin, Guangxi Normal University, 2006 (in Chinese)] improved the lower bound to n+1. In this paper, the bound is improved to the statement that any contraction critical 5-connected graph on n vertices has at least trivially noncontractible edges.  相似文献   

17.
In the Minimum Label Spanning Tree problem, the input consists of an edge-colored undirected graph, and the goal is to find a spanning tree with the minimum number of different colors. We investigate the special case where every color appears at most r times in the input graph. This special case is polynomially solvable for r=2, and NP- and APX-complete for any fixed r?3.We analyze local search algorithms that are allowed to switch up to k of the colors used in a feasible solution. We show that for k=2 any local optimum yields an (r+1)/2-approximation of the global optimum, and that this bound is tight. For every k?3, there exist instances for which some local optima are a factor of r/2 away from the global optimum.  相似文献   

18.
We show that a complete equipartite graph with four partite sets has an edge-disjoint decomposition into cycles of length k if and only if k≥3, the partite set size is even, k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k. We also show that a complete equipartite graph with four even partite sets has an edge-disjoint decomposition into paths with k edges if and only if k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k+1.  相似文献   

19.
We obtain a sequence k1(G) ≤ k2(G) ≤ … ≤ kn(G) of lower bounds for the clique number (size of the largest clique) of a graph G of n vertices. The bounds involve the spectrum of the adjacency matrix of G. The bound k1(G) is explicit and improves earlier known theorems. The bound k2(G) is also explicit, and is shown to improve on the bound from Brooks' theorem even for regular graphs. The bounds k3,…, kr are polynomial-time computable, where r is the number of positive eigenvalues of G.  相似文献   

20.
The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit balls can have. Our method for finding lower and upper estimates for the largest contact numbers is a combination of analytic and combinatorial ideas and it is also based on some recent results on sphere packings. In particular, we prove that if C(n) denotes the largest number of touching pairs in a packing of n>1 congruent balls in Euclidean 3-space, then $0.695<\frac{6n-C(n)}{n^{\frac{2}{3}}}< \sqrt[3]{486}=7.862\dots$ for all $n=\frac{k(2k^{2}+1)}{3}$ with k??2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号