首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific features revealed in the structure of the d 3 Cr(III), d 2 Cr(IV), d 1Cr(V), and d 0 Cr(VI) peroxo complexes with the ratios M:O2 = 1:1, 1:2, and 1:4 are considered. It is noted that, in eleven compounds of the general formula Cr(O2)nOm A p (n = 1, 2, 4; m = 0, 1; p = 0–4), the metal atoms can be in four oxidations states: +3 (d 3), +4 (d 4), +5 (d 1), and +6 (d 0). This property distinguishes chromium peroxo compounds from molybdenum and tungsten dioxygen complexes, which, with one exception, are represented by the d 0 M(VI) compounds.  相似文献   

2.
Structural characteristics of peroxo complexes of transition metals of Groups IV and V (Ti, V, Nb, and Ta) with the ratios M: O2 = 1: 1, 1: 2, 1: 3, and 1: 4 and alkyl peroxo complexes of Ti, Hf, and V have been considered. The structural manifestation of the trans effect of η2-coordinated peroxo ligand in pseudooctahedral Ti, Nb, and V monoperoxo complexes is characterized. The structural manifestations of the trans effect of multiply bonded peroxo and oxo ligands in monooxomonoperoxo complexes of vanadium(V) are compared.  相似文献   

3.
The crystal structure of new manganese potassium copper vanadate KCuMn3(VO4)3, which was prepared by the hydrothermal synthesis in the K2CO3–CuO–MnCl2–V2O5–H2O system, was studied by X-ray diffraction (R = 0.0355): a = 12.396(1) Å, b = 12.944(1) Å, c = 6.9786(5) Å, β = 112.723(1)°, sp. gr. C2/c, Z = 4, ρcalc = 3.938 g/cm3. A comparative analysis of the crystal-chemical features of the new representative of the alluaudite family and related structures of minerals and synthetic phosphates, arsenates, and vanadates of the general formula A(1)A(1)′A(1)″A(2)A(2)′M(1)M(2)2(TO4)3 (where A are sites in the channels of the framework composed of MО6 octahedra and TО4 tetrahedra) was performed. A classification of these structures into subgroups according to the occupancy of A sites is suggested.  相似文献   

4.
A method for determining average lengths of unstrained bands A-X (l0AX) and B-X (l0BX) and the ratio of the rigidity constants of these bonds for ABX3 compounds with perovskite structure is proposed. The values of l0AX and l0BX correspond to the minimum energies of cation-anion interaction of the crystal sublattices. Values of l0AX and l0BX are obtained for several groups of halide and oxide compounds: A+B2+F3, Cs+B2+Cl3, A+B5+O3, A2+B4+O3, and A3+B3+O3. It is ascertained that, for most compounds studied, the values of l0AX and l0BX are equal or close to the interatomic distances in crystals of binary compounds. The values of l0AX and l0BX are compared with the sums of the radii of the corresponding cations (R A , R B ) and anions (\(^{VI} R_{O^{2 - } } ,^{VI} R_{F^ - } ,^{VI} R_{Cl^ - }\)). It is found that the differences \(l_{0AO^ - } ^{VI} R_{O^{2 - } } (L_{0AF^ - } ^{VI} R_{F^ - } )\) and \(l_{0BO^ - } ^{VI} R_{O^{2 - } } (l_{0BF^ - } ^{VI} R_{F^ - } )\), regarded as the radii of the A and B cations in unstrained bonds, are close to the Shannon radii for a coordination number of six. It is shown that the rigidity constant for A-X bonds is several times smaller than that for B-X bonds.  相似文献   

5.
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO2(C3H2O4)(Urea)2] (I) and [UO2(C3H2O4)(Urea)3] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO2(C2O4)(Urea)3] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO2(C3H2O4)(Urea)2] belonging to the crystal-chemical group AT11M21 (A = UO22+, T11 = C3H2O42-, M1 = Urea) of uranyl complexes. Crystals II and III are composed of the molecular complexes [UO2(L)(Urea)3], where L = C3H2O42- or C2O42-, belonging to the crystal-chemical group AB01M31 (A = UO22+, B01 = C3H2O42- or C2O42-, M1 = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.  相似文献   

6.
Three new succinate-containing complexes of uranyl with carbamide (Urea) and N,N'-dimethylurea (s-Dmur) are synthesized and studied by IR spectroscopy and X-ray diffraction. Structures of the same type, [UO2(Urea)4(H2O)][(UO2)2(C4H4O4)3] · 3H2О and [UO2(Urea)4(H2O)][(UO2)2(C4H4O4)3] · 2Urea contain two sorts of uranium-containing complex groups, namely, mononuclear [UO2(Urea)4(H2O)]2+ cations and two-dimensional [(UO2)2(C4H4O4)3]2– anions described by crystal-chemical formulas 5 1 and A 2 Q 3 02, respectively (A = UO2 2+, M 1 = Urea or H2O, Q 02 = C4H4O4 2-), and differ only in the nature of noncoordinated molecules—water and carbamide. The main structural groups of the [(UO2)2(C4H4O4)2(s-Dmur)3] crystals are [(UO2)2(C4H4O4)2(s-Dmur)3] chains belonging to the А 2 Q 2 02 M 3 1 (A = UO2 2+, Q 02 = C4H4O4 2-, M 1 = s-Dmur) crystal-chemical group. Specific features of intermolecular interactions in the crystal structures are revealed using the Voronoi–Dirichlet method of molecular polyhedra.  相似文献   

7.
The crystal structure of Rb2Mn3(H2O)2[P2O7]2, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl2–Rb3PO4–H2O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P21/c, Z = 2, Dx = 3.27 g/cm3. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A2M3(H2O)2[P2O7]2 diphosphates (A = K, NH4, Rb, or Na; M = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.  相似文献   

8.
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2M(3–6)(Fe, Mn)4M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3M(4–6)[(Fe, Mn)0.7Mg0.3]3M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.  相似文献   

9.
A combinatorial-topological analysis of the orthogermanates LiNdGeO4 (space group Pbcn) and CeGeO4 (space group I 41/a, the scheelite structure type), which have MT frameworks composed of polyhedral structural units in the form of M dodecahedra (NdO8 and CeO8) and T tetrahedra (GeO4), is performed using the method of coordination sequences with the TOPOS program package. It is established that the structures of both orthogermanates are characterized by equivalent crystal-forming nets 4444. The cluster precursors of the M 2 T 2 cyclic type are identified by the method of two-color decomposition. The local symmetry of four-polyhedral clusters corresponds to the point group 2. In the precursor of the LiNdGeO4 orthogermanate, the Li atom is located above the M 2 T 2 ring. The number of Li-O bonds in this precursor is 4. The cluster precursors M 2 T 2 and LiM 2 T 2 are responsible for the formation of crystal-forming clusters of a higher level according to the mechanism of matrix self-assembly. The coordination numbers of the cluster precursors in two-dimensional nets for these structures are found to be equal to 4. The equivalent bilayer TR,Ge stacks that consist of eight cluster precursors are revealed in the structures under investigation. It is demonstrated that there exist three types of translational interlayer arrangements of cluster precursors upon the formation of macrostructures of the orthogermanates.  相似文献   

10.
The synthesis and X-ray diffraction study of compound Rb2[(UO2)2(C2O4)3], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) Å, b = 8.8259(8) Å, c = 11.3220(7) Å, β = 105.394(2)°, and V = 770.7(1) Å3; space group P21/n, Z = 2, and R 1 = 0.0271. [(UO2)2(C2O4)3]2? layers belonging to the AK 0.5 02 T 11 crystal chemical group of uranyl complexes (A = UO 2 2+ , K 02 = C2O 4 2? , and T 11 = C2O 4 2? ) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.  相似文献   

11.
Earlier X-ray diffraction studies of a series of 12 adducts (I–XII) between metallochelate complexes [M = Co(II), Ni(II), and Cu(II)] with tridentate N,N,N(N,N,O)-donating Schiff bases (L) and monodentate or bidentate ligands (L′) revealed a similarity in the stereochemistry of these compounds. The coordination polyhedron of metal atoms in compounds I–XII is a tetragonal pyramid (bipyramid) with two vertices occupied competitively. The L ligand occupies three coordination sites in the base of the pyramid. The L′ ligand approaches the metal atom, as a rule, in a direction perpendicular to the basal plane. The fourth site in the base of the pyramid and the apical vertex are occupied competitively. Different patterns of occupation of these positions are observed: they include the donor atoms of both the L and L′ ligands.  相似文献   

12.
The compound Rb2[(UO2)2(CrO4)3(H2O)2] · 4H2O was studied by X-ray diffraction. The crystals are monoclinic, a = 10.695(2) Å, b = 14.684(3) Å, c = 14.125(3) Å, β = 108.396(4)°, sp. gr. P21/c, Z = 4, V = 2104.9(7) Å3, and R = 0.0491. The main structural units are layers consisting of [(UO2)2(CrO4)3(H2O)2]2? anions belonging to the crystal-chemical group A 2 T 2 3 B 2M 2 1 (A = UL 2 2+ , T 3 and B 2 are CrO 4 2? , and M 1 is H2O) of uranyl complexes. The uranium-containing layered groups are held together by electrostatic interactions with rubidium cations, as well as by hydrogen bonds with the participation of inner- and outer-sphere water molecules.  相似文献   

13.
The crystal structure of the hexahydroborite analog Ca[B(OH)4]2 · 2H2O (a = 7.9941(3) Å, b = 6.6321(2) Å, c = 7.9871(3) Å, β = 104.166(4)°, V = 410.58(3) Å3, sp. gr. P2/c, Z = 2, ρcalc = 1.891 g/cm3; Xcalibur S CCD automated diffractometer, 1196 reflections with I > 2σ(I), λMoK α), which was synthesized by the hydrothermal method via the recrystallization of calciborite CaB2O4 (M) in the M ? B2O3 ? H2O system (t = 250°C and P = 70–80 atm), was refined by the least-squares method with anisotropic displacement parameters (H atoms were located; R 1 = 0.0260). The structure of synthetic hexahydroborite consists of infinite columns running along the c axis. The columns are formed by Ca polyhedra linked together and to [B(OH)4] orthotetrahedra by sharing edges. Along the two other axes, the translationally equivalent columns are linked only by hydrogen bonds. The presence of a stronger bond between the discrete (Ca-B-O) columns along the shortest (b = 6.6 Å) axis accounts for the possibility of the shift of the columns by 1/2T b and the formation of the second modification of Ca[B(OH)4]2 · 2H2O. The crystals of synthetic hexahydroborite were studied by IR spectroscopy. A crystal-chemical analysis was performed for a series of natural metaborates with the general formula CaB2O4 · nH2O (CaO: B2O3 = 1: 1, n = 0–6), including calciborite CaB2O4 and hexahydroborite CaB2O4 · 6H2O as the end members.  相似文献   

14.
The pyridoxine complexes with zinc and cadmium sulfates are synthesized. The IR absorption spectra and thermal behavior of the synthesized compounds are described. Crystals of the [M(C8H11O3N)2(H2O)2]SO4 · 3H2O (M = Zn, Cd) compounds are investigated using X-ray diffraction. In the structures of both compounds, the M atoms are coordinated by the oxygen atoms of the deprotonated OH group and the CH2OH group retaining its own hydrogen atom, as well as by two H2O molecules, and have an octahedral coordination. The nitrogen atom of the heterocycle is protonated, so that the heterocycle acquires a pyridinium character. The cationic complexes form layers separated by the anions and crystallization water molecules located in between. The structural units of the crystals are joined together by a complex system of hydrogen bonds.  相似文献   

15.
Crystals of UO2CrO4(C5NH5COO)2(H2O)] · 2H2O are synthesized and their structure is studied by X-ray diffraction. The compound crystallizes in the triclinic crystal system. The unit cell parameters are as follows: a = 7.0834(10) Å, b = 10.6358(14) Å, c = 12.9539(17) Å, α = 75.096(2)°, β = 74.490(2)°, and γ = 80.657(2)°; V = 904.1(2) Å3, space group P \(\bar 1\), Z = 2, and R = 0.026. The structure is built of [UO2CrO4(C5NH5COO)2(H2O)]2 centrosymmetric dimers, which are linked into a framework by a system of hydrogen bonds involving inner-sphere and outer-sphere water molecules. The coordination number of the U(VI) atom is seven, and the coordination polyhedron is a pentagonal bipyramid with the oxygen atoms of the uranyl group, two chromate groups, two molecules of isonicotinic acid, and a water molecule at the vertices. The crystal chemical formula of the [UO2CrO4(C5NH5COO)2(H2O)]2 dimer is represented as AB 2 M 3 1 , where AB 2 M 3 1 , where A = UO 2 2+ , B 2 = CrO 4 2? , and M 1 = = C5NH4COOH and H2O.  相似文献   

16.
The crystal structure of monoclinic La3SbZn3Ge2O14 crystals from the langasite family is determined by X-ray diffraction analysis [a = 5.202(1) Å, b = 8.312(1) Å, c = 14.394(2) Å, β = 90.02(1)°, sp. gr. A2, Z = 2, and R/R w = (5.2/4.6)%]. The structure is a derivative of the Ca3Ga2Ge4O14-type structure (a = 8.069 Å, c = 4.967 Å, sp. gr. P321, Z = 1). The crystal studied is a polysynthetic twin with the twin index n = 2, whose monoclinic components are related by pseudomerohedry by a threefold rotation axis of the supergroup P321.  相似文献   

17.
Beryls and beryllian indialite {the general formula M VI 2 T(2)IV 3 T(1)IV 6O18} synthesized in magnesium-containing flux systems saturated with chromium are investigated using X-ray diffraction. The isovalent schemes of the isomorphous incorporation of chromium into Moctahedra of these compounds and the simultaneously realized heterovalent schemes with the participation of other components are revealed from the occupancies of the positions. It is demonstrated that an increase in the average bond lengths in the M positions leads predominantly to an increase in the parameter α. In the beryllian indialites, the T(1) tetrahedra are substantially closer to perfect tetrahedra, the T(2) tetrahedra are distorted to a lesser extent, and the M octahedra are distorted to a greater extent than those in beryls. The structural indications of the ability of compounds with a beryl structure to congruently melt are distinguished.  相似文献   

18.
The synthesis and single-crystal X-ray diffraction study of Cs[UO2(SeO4)(OH)] · 1.5H2O (I) and Cs[UO2(SeO4)(OH)] · H2O (II) are performed. Compound I crystallizes in the monoclinic crystal system, a = 7.2142(2) Å, b = 14.4942(4) Å, c = 8.9270(3) Å, β = 112.706(1)°, space group P21/m, Z = 4, and R = 0.0222. Compound II is monoclinic, a = 8.4549(2) Å, b = 11.5358(3) Å, c = 9.5565(2) Å, β = 113.273(1)°, space group P21/c, Z = 4, and R = 0.0219. The main structural units of crystals I and II are [UO2(SeO4)(OH)]? layers which belong to the AT 3 M 2 crystal chemical group of uranyl complexes (A = UO 2 2+ , T 3 = SeO4 2?, and M 2 = OH?). In structure I, johannite-like layers are found. Structure II is a topological isomer of I. The two structures differ in the number of U(VI) atoms bound to the central atom by all bridging ligands.  相似文献   

19.
A series of chalcone podands with the propenone group in the ortho position of the bridging aryl substituent with respect to the oxyethylene fragment is synthesized. The influence of the preorganization of the chalcone podand molecules in crystals on their ability to participate in topochemical reactions is investigated. From analyzing the X-ray structural data, the highest probability of the solid-state photochemical [2 + 2]cycloaddition is predicted for podands with phenyl substituents and the oxyethylene fragment containing two or three oxygen atoms. The X-ray structural data for the chalcone podand C32H26O4 (3a) are as follows: a = 7.904(9) Å, b = 14.92(2) Å, c = 21.30(3) Å, β = 91.7(1)°, monoclinic system, space group P21/c, Z = 4, V = 2510(5) Å3, ρ = 1.26 g/cm3, and R = 0.046; C34H30O5 (3b): a = 15.738(9) Å, b = 11.889(2) Å, c = 15.0830(15) Å, β = 105.47(14)°, monoclinic system, space group C2/c, Z = 4, V = 2720.0(9) Å3, ρ = 1.266 g/cm3, and R = 0.0418; C32H24N2O8 (4a): a = 17.9416(18) Å, b = 10.9703(8) Å, c = 41.699(2) Å, β = 105.970(11)°, monoclinic system, space group P21/c, Z = 4, V = 2781.4(5) Å3, ρ = 1.348 g/cm3, and R = 0.0426; C36H32N2O10 (4c): a = 7.6286(5)Å, b = 17.9398(10) Å, c = 11.5890(3)Å, β = 95.287(4)°, monoclinic system, space group P21/n, Z = 2, V = 1579.27(14) Å3, ρ = 1.372 g/cm3, and R = 0.0377; and C28H22O6 (5a): a = 15.6032(10) Å, b = 8.1131(5) Å, c = 17.7334(11) Å, β = 91.381(5)°, monoclinic system, space group C2/c, Z = 4, V = 2244.2(2) Å3, ρ = 1.345 g/cm3, and R = 0.0309.  相似文献   

20.
Compound [UO2(C5H12N2O)5](ClO4)2 is synthesized and characterized by thermogravimetry, IR spectroscopy, and X-ray diffraction. The compound crystallizes in the monoclinic crystal system; a = 15.2985(9) Å, b = 26.9676(15) Å, c = 20.6962(11) Å, β = 100.697(1)°, space group P21/c, Z = 8, and R = 0.0445. Discrete [UO2(C5H12N2O)5]2+ groups belonging to the AM 5 1 crystal chemical group of uranyl complexes (A = UO 2 2+ and M 1=C5H12N2O) are uranium-containing structural units of the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号