首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The optical storage properties of LiTaO3:Fe are investigated and compared with those of the isomorphous compound LiNbO3:Fe. Absorption, photocurrent, photoconductivity and holographic measurements are reported. In the case of photovoltaic writing similar results for LiTaO3- and LiNbO3-crystals are obtained. However, in the case of photoconductive writing using external electric fields LiTaO3:Fe-crystals yield much better results due to large photoconductivity values. Considering the recording sensitivity and the extremely large storage time LiTaO3:Fe turns out to be one of the most promising materials for photorefractive storage of volume phase holograms.  相似文献   

2.
The impacts of boron-based Li salt additives including lithium tetrafluoroborate (LiBF4) and lithium difluoro(oxalate)borate (LDFOB) on the storage life of Li-ion battery at elevated temperature are investigated. Adding 1 wt% additives in the electrolyte significantly affects the storage life of the LiNi0.8Co0.15Al0.05O2/graphite full cell at 55 °C. The anode solid electrolyte interphase (SEI), preventing the loss of Li+ and e? in anode, is the key factor affecting the storage life. The formation and aging of SEI on the graphite anode with and without additives are investigated. It is found that the SEI formed with the addition of LiBF4 is thick and loose due to LiF crystals produced by the decomposition of LiBF4 and the SEI cannot prevent the Li+ and e? loss in anode and the decomposition of the electrolyte solvent, resulting in shorter storage life of the battery. On the contrary, the SEI formed with the addition of LDFOB is thick and compact due to formation of the lithium oxalate in the SEI, produced by the decomposition of LDFOB. The SEI efficiently inhibits decomposition of the electrolyte solvent on anode and makes a longer storage life of the battery.  相似文献   

3.
The power battery was manufactured with the commercial LiMn2O4 and graphite, and its storage performances with different charged state were studied. Structure, morphology, and surface-state change of the LiMn2O4 before and after storage were observed by XRD, SEM, XPS, CV, and AC technique, respectively. The electrochemical performances of LiMn2O4 battery were tested. The result shows that the capacity recovery of LiMn2O4 stored at discharge state is best (99.2%). While that of full-charged state is worst (93.6%). The cyclic performance of LiMn2O4 battery after storage is improved. The cyclic performance of LiMn2O4 stored at full-charged state is best (capacity retention ratio of 89.8% after 200?cycles), while that of before storage is 83.0%. The crystal of the spinel was destroyed after storage, and the intensity of breakage is increased with charge state increasing. The amount of soluble Mn and Li-ion migration resistance (R f) are increased with charge state increasing, and the oxygen loss is detected.  相似文献   

4.
In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg1-xMxH2 (M=Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa-Kohn-Rostoker (KKR) calculation with the coherent potential approximation (CPA) approximation. In particular, the nature and the concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities.  相似文献   

5.
NOx storage and reduction (NSR) catalysts are a well-known and broadly used technology to reduce NOx emissions from combustion engines, which may also be applied for hydrogen fueled engines in the future. In this study, Pt- and Pd-based NSR-catalysts were investigated in the absence and presence of water to understand how NO oxidation as well as the storage and reduction phases are influenced by the gaseous environment with H2 as a reductant. A planar channel configuration was chosen for conducting planar laser-induced fluorescence experiments during the storage phase in addition to steady-state oxidation measurements and transient lean/rich cycles in a packed bed reactor. The presence of steam significantly decreases the NO oxidation activity of both noble metal catalysts. The Pt/BaO/Al2O3 catalyst is more active during transient lean/rich cycles, however, it suffers an activity loss during repeated cycles, whereas the activity of the Pd/BaO/Al2O3 sample is slightly more stable in the wet gas feed over time. All experiments showed a strong correlation between the NO2 formation over the catalyst and its storage capability. The influence of water in the exhaust gas on the NSR-catalysts shows a strong temperature dependency on storage and reduction of NO for both catalysts containing Pt and Pd. The storage behavior is also strongly influenced by both the experimental configurations chosen revealing the significance of the interaction of intrinsic catalytic kinetics and mass transfer in the surrounding flow field.  相似文献   

6.
叶浩亮  李飞  王松林 《应用声学》2017,25(5):218-221
锂-亚硫酰氯电池作为一种免维护、高比能、长储存寿命电池,目前已经在以国防领域为代表的国民经济中得到了广泛应用;其储存寿命的考核在行业内尚属难题;通过广泛、深入地调研和对前期锂-亚硫酰氯电池储存数据的收集整理,研究了锂-亚硫酰氯电池的储存寿命影响因素及其试验评估方法;通过研究得知,锂-亚硫酰氯电池的储存寿命试验应尽早备样,若时间紧迫可通过加速试验方法;提出了通过等效储存试验时间来评估电池储存寿命及其可靠度的方法,指出当等效储存试验时间不足时,应安排样本进行容量回归分析,得出其退化规律;此外,还要对电池储存末期热性能进行分析;在以上工作基础上对电池储存寿命进行综合评估;最后,通过案例分析,进行了工程演算;为后续锂-亚硫酰氯电池储存寿命评估提供了参考。  相似文献   

7.
Holographic data storage is promised to be the next-generation optical storage technology for many years. The Zn:Fe:LiNbO3 crystal is studied widely because of its promising holographic storage properties. The forced oscillator model is used to explain the self-erasing phenomenon in the reduced Zn:Fe:LiNbO3 crystals. It is showed that the total spatial charge field is dominated by two kinds of carrier with different respond time, which are electron and hole, respectively. The cooperative action of two kinds carrier induces that the total charge field non-monotonically varies with the recording time. The same diffraction efficiency of hologram with equal exposure energy is realized by the self-erasing property. The precision of the optical correlation recognition based on holographic storage will be improved.  相似文献   

8.
SiO2 is one of the most promising lithium storage materials for lithium-ion batteries anodes due to its low cost, good environmental compatibility, low working voltage, and high-specific capacity. In this work, the desert sands, which are rich in SiO2, are investigated as the anode material for lithium-ion batteries. The electrochemical activation, lithium storage capacity, and cycle properties are highly dependent on the particle size distribution of sands. As the average particle sizes of sands gradually decrease, the reversible lithium storage capacity increases from 137 mAh g?1 (several microns) to 492 mAh g?1 (several submicrons). The 72 h-milled sands (average particle size: ~1 μm) deliver a stable lithium storage capacity of ~400 mAh g?1 over 400 cycles with the capacity retention as high as 95%. The reason for the electrochemical activation, lithium storage capacity, and cycle properties of sands associated with their particle size distribution is also discussed.  相似文献   

9.
The multi-state storage capability of phase-change memory (PCM) was confirmed by using stacked chalcogenide layers as storage medium. The stacked films were prepared by stacking a pure Ge2Sb2Te5 (GST) layer, a tungsten layer and a silicon-doped GST layer. The electrical properties of the stacked films were also investigated. The results show that there are two negative differential resistance areas in the current-voltage (I–V) curve and three steps with three relatively stable resistance values in the resistance-voltage (R–V) curve, which indicate that the multi-state storage of PCM can be realized by using this stacked film structure. Qualitative analysis reveals that the multi-state storage capability of this stacked film structure is due to the successive crystallizations in a silicon-doped GST layer and a pure GST layer. PACS 64.60.Cn; 71.55.Jv; 85.30.De; 85.30.Fg  相似文献   

10.
LiFePO4-positive electrode material was successfully synthesized by a solid-state method, and the effect of storage temperatures on kinetics of lithium-ion insertion for LiFePO4-positive electrode material was investigated by electrochemical impedance spectroscopy. The charge-transfer resistance of LiFePO4 electrode decreases with increasing the storage temperatures. This suggests that it has a high electrochemical activity at high temperature. The diffusion coefficient of lithium ion is greatly increased with increasing the storage temperatures, indicating that the kinetics of Li+ and electron transfer into the electrodes were much fast at high storage temperature.  相似文献   

11.
Nanoporous carbon microspheres (NCMs) are prepared by a one-step carbonizing and activating resorcinol?formaldehyde polymer spheres (RFs) in inert and CO2 atmosphere for anode materials of lithium-ion batteries (LIBs). Compared with RFs carbon microspheres (RF-C), after activating with hot CO2, the NCMs with porous structure and high BET surface area of 2798.8 m2 g?1, which provides abundant lithium-ion storage site as well as stable lithium-ion transport channel. When RF-C and NCM are used to anode material for LIBs, at the same current density of 210 mA g?1, the initial specific discharge capacity are 482.4 and 2575.992 mA h g?1, respectively; after 50 cycles, the maintain capacity are 429.379 and 926.654 mA h g?1, respectively. The porous spherical structure of NCM possesses noticeably lithium-ion storage capability, which exhibits high discharge capacity and excellent cycling stability at different current density. The CO2 activating carbonaceous materials used in anode materials can tremendously enhance the capacity storage, which provides a promising modification strategy to improve the storage capacity and cyclic stability of carbonaceous anode materials for LIBs.  相似文献   

12.
Mg2FeH6, which has one of the highest hydrogen storage capacities among Mg based 3d-transitional metal hydrides, is considered as an attractive material for hydrogen storage. Within density-functional perturbation theory (DFPT), we have investigated the structural, vibrational and thermodynamic properties of Mg2FeH6. The band structure calculation shows that this compound is a semiconductor with a direct X-X energy gap of 1.96 eV. The calculated phonon frequencies for the Raman-active and the infrared-active modes are assigned. The phonon dispersion curves together with the corresponding phonon density of states and longitudinal-transverse optical (LO-TO) splitting are also calculated. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as free energy, internal energy, entropy and heat capacity within the quasi-harmonic approximation based on the calculated phonon density of states.  相似文献   

13.
《Current Applied Physics》2009,9(5):1122-1124
The Fe:CdSe thin films have been electrodeposited potentiostatically onto the stainless steel substrates, from non-aqueous bath containing (CH3COO)2 · Cd · 2H2O, SeO2 and FeCl3. The solar rechargeable (semiconductor–septum) storage cell is fabricated with the configuration C|1 M polysulphide|n-Fe:CdSe|stainless steel||1 M FeCl3 or 1 M K4Fe(CN)6|C. The charging and discharging modes are studied and discussed. The comparison of FeCl3 and K4Fe(CN)6 based solar rechargeable storage cells, showed that FeCl3 based storage cell is superior than that of K4Fe(CN)6 based electrolyte because relatively charging time is minimum and discharging time is maximum. Thus it is concluded that the storage cell works not only as a generator but also as the storage of electricity.  相似文献   

14.
Alcohol based sols of cerium chloride (CeCl3·7H2O) and titanium propoxide (Ti(OPr)4) in ethanol mixed in different mole ratios have yielded mixed oxide films on densification at 500 °C. The reversibility of the intercalation/deintercalation reactions has shown electrochemical stability of the films. Addition of TiO2 in an equivalent mole ratio manifests in producing highly transparent films with appreciable ion storage capacity. The electrochemical studies have revealed the significant role of TiO2 in controlling the ion storage capacity of the films, as it tends to induce the disorder. In addition, the films prepared from an aged sol are observed to exhibit a much higher ion storage capacity than the films deposited using the as-prepared sol. The X-ray photoelectron spectroscopic studies have provided information on the variation of Ce4+/Ce3+ ratio as a function of increased TiO2 content in the films. This study has led to a better understanding of the increased ion storage capacity with the increased TiO2 proportion. The transmission electron microscopic study has demonstrated the presence of CeO2 nanograins even in films, which are amorphous to X-rays. Elucidation of the structural, optical and electrochemical features of the films has yielded information on aspects relevant to their usage in transmissive electrochromic devices. The films have been found to exhibit properties that can find application as counter electrode in electrochromic smart windows in which they are able to retain their transparency under charge insertion, high enough for practical uses. Also, the fastest coloration-bleaching kinetics for the primary electrochromic electrode (WO3) working in combination with Ce/Ti (1:1) electrode stimulates the use of latter in electrochromic windows (ECWs).  相似文献   

15.
This paper applies a density functional theory(DFT) and grand canonical Monte Carlo simulations(GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC 3 nanotubes and carbon nanotubes.The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes.Furthermore,the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions.The present results have shown that with both computational methods,the hydrogen storage capacity of BC 3 nanotubes is superior to that of carbon nanotubes.The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.  相似文献   

16.
Stratification is one of the main causes for vaporization of cryogens and increase of tank pressure during cryogenic storage. This leads subsequent problems such as cavitation in cryo-pumps, reduced length of storage time. Hence, it is vital to prevent stratification to improve the cost efficiency of storage systems. If stratified layers exist inside the tank, they have to be removed by suitable methods without venting the vapor. Sonication is one such method capable of keeping fluid layers mixed. In the present work, a mechanistic model for ultrasonic destratification is proposed and validated with destratification experiments done in water. Then, the same model is used to predict the destratification characteristics of cryogenic liquids such as liquid nitrogen (LN2), liquid hydrogen (LH2) and liquid ammonia (LNH3). The destratification parameters are analysed for different frequencies of ultrasound and storage pressures by considering continuous and pulsed modes of ultrasonic operation. From the results, it is determined that use of high frequency ultrasound (low-power/continuous; high-power/pulsing) or low frequency ultrasound (continuous operation with moderate power) can both be effective in removing stratification.  相似文献   

17.
Following the discovery of carbon nanotubes, inorganic fullerene-like nanotubes such as WS2–MoS2, NbS2, TiS2, and BN were reported. Inorganic (non-carbon) nanotubes constitute an important class of nanomaterials with interesting properties and potential applications. As known, efficient hydrogen storage is one key problem in the development of a hydrogen energy system. Hydrogen storage using carbon nanostructures is scientifically interesting and challenging. It thus would be worthwhile to look into hydrogen storage in inorganic nanotubes because the van der Waals gaps between the nanotube layers are potential candidates for hydrogen uptake. Furthermore, the inorganic nanotubes combine two elements, which is different from the pure carbon nanotubes. These may show a novel hydrogen adsorption–desorption mechanism. The present review provides a brief study of hydrogen adsorption on MoS2, TiS2, and BN nanotubes. PACS 81.07.De; 81.07.-b; 81.05.Tp; 68.43.-h  相似文献   

18.
The concept of a phase-change material-based, thermal energy storage system is often used for different applications. A theoretical model to determine the thermal and fluid flow characteristics of a thermal energy storage system using a phase-change material has been developed. The model can be used to predict the energy storage behavior of different phase-change materials used with different heat transfer fluids, flow geometries, flow rates and temperatures. Results have been obtained for the case where the phase-change material is Na2SO4·10H2O (Glauber's salt) and the heat transfer fluid is water. The variation of the dimensionless temperatures of the fluid and the solid, and the molten fraction of the solid during the phase change process, with dimensionless time, for different values of Biot number, Stefan number, and the flow parameter have been determined. A discussion of the results obtained and the conclusions drawn from them are also given.  相似文献   

19.
The extraordinary stability and cycle life performance of today’s electrochemical double-layer capacitors (EDLCs) are generally ascribed to the fact that charge storage in activated carbon (AC) is based on pure double-layer charging. In contrast, Faradaic charge-transfer reactions like those occurring in batteries are often connected with dimensional changes, which can affect the cycle life of these storage devices. Here we report the charge-induced height change of an AC electrode in an aprotic electrolyte solution, 1 mol/l (C2H5)4NBF4 (TEABF4) in acetonitrile. The results are compared with those obtained for a graphite electrode in the same electrolyte. For both electrodes, we observe an expansion/contraction of several percent for a potential window of ±2 V vs. the immersion potential (ip). For the EDLC electrode, significant expansion starts at about 1 V remote from the ip and hence is well within the normal EDLC operation range. For the graphite electrode, the height changes are unambiguously caused by intercalation/deintercalation of both anions and cations. The close analogies between the graphite and the EDLC electrode suggest that ion intercalation or insertion processes might play a major role for charge storage, self discharge, cyclability, and the voltage limitation of EDLCs. PACS 82.47.Uv; 82.45.Fk; 82.45.Gj; 82.80.Fk; 81.05.Uw  相似文献   

20.
: Onboard recorder is playing on a critical equipment, with large storage capacity, small size, high reliability, and its storage module compared to other storage modules have higher reliability. This paper briefly introduces the methods of work about onboard recorder and memory module.In terms of memory module exists problems on reliability, optimized design from software include the transfer of work state and recognition of instruction of memory module, and the asynchronous serial communication application in memory module, monitoring the working state of memory module. Compared with before, the memory module work more flexible and reliable.#$NLKeywords: reliability; Alternate page programming; Serial communication; Condition monitoring  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号