首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat capacity and resistivity of Sm0.55Sr0.45MnO3 ceramics were measured over the temperature range 80–300 K in magnetic fields of up to 26 kOe. These quantities show anomalies caused by the magnetic and structural phase transitions. The critical temperature T c and the heat capacity jump ΔC p (T c ) at T c increase with increasing applied magnetic field H, while the resistivity decreases. The temperature dependences of the measured quantities show hysteresis, which is strongly suppressed in a field of 26 kOe but is sensitive nor to the temperature range neither to the rate of temperature change. The hysteresis of the heat capacity and resistivity of Sm0.55Sr0.45MnO3 is caused by a change in T c with changing lattice parameters upon second-order structural phase transition. The results are discussed in terms of the electron phase separation model.  相似文献   

2.
With respect to the quasi-one dimensionality of single crystals of Nb3Se4, the electrical resistivity from 1.3 to 320 K and the critical magnetic field for superconductivity are measured. The resistivity along the Nb-chain direction is represented as a sum of a temperature independent and an intrinsic temperature dependent term. The temperature dependence of the intrinsic resistivity subjects to T3 form between 10 and 80 K above which it tends to a T linear form. The critical magnetic field is proportional to the temperature difference from the transition temperature. Its dependence is well fitted by the elliptical fluxoid model of Ginzburg-Landau theory. The ratio of the parallel and the perpendicular to the c-axis is 5.7.  相似文献   

3.
Giant magnetoresistance in Ce-doped manganite systems   总被引:2,自引:0,他引:2  
The fascinating properties like giant magnetoresistance (GMR) effect, metal-insulator transition, charge ordering phenomenon etc. have made the divalent ion doped RMnO3 (R = rare-earth elements) an attractive system for investigation. Resistivity of these compounds shows a peak near the ferromagnetic transition temperature (T c ). The application of magnetic field inhibits the spin-disorder scattering and the resistivity decreases drastically. Keeping electrondoped superconductor Nd2?x Ce x CuO4 in mind we have doped RMnO3 (R = La, Pr, Nd) with tetravalent Ce ion. These compounds are very susceptible to the annealing treatment and belong to the orthorhombic perovskite phase. They show a very high value of resistivity at the peak and under the magnetic field the GMR effect is observed. For La0.7Ce0.3MnO3 and Pr0.7Ce0.3MnO3 the magnetoresistance ratio reaches about 54% and 82.5% respectively at 7.7 T. With the increase of the temperature the magnetic state changes from ferromagnetic to paramagnetic regime. This magnetic transition is not very sharp and the resistivity peak appears at a temperature higher than T c .  相似文献   

4.
The electrical resistivity of the metallic magnetic system with a periodic array of non-interacting localized spins has been calculated by employing the T-matrix formulation. It has been shown that only the spin-flip part of the T-matrix contributes to the resistivity. Within the Suhl and Wong approximation, our calculation shows that a resistivity maximum in the resistivity-temperature curve appears at low temperature. This result qualitatively explains the anomalous resistivity maxima in PrxLa1-xSn3 and TbxY1-xAs. It can also be applied to interpretate the similar anomalous resistivity maxima in concentrated and diluted CeAl3.  相似文献   

5.
We present the electrical resistivity measurements of equiatomic RPt compounds, with R  La, Pr, Nd, Gd, Tb, Dy, Ho and Er, which crystallize into two different orthorhombic structures. The different contributions to the total resistivity were separated. From the phonon contribution ϱp we estimated the Debye temperature θD of the different compounds. Except for GdPt, the increase of the magnetic resistivity above Tc arise from crystal field effects which are larger than those calculated in the point charge model. The paramagnetic Curie temperature and the saturated magnetic resistivity follow approximately the de Gennes law and allowed us to estimate effective mass and the exchange constant through the series.  相似文献   

6.
A series of self-doped La0.9MnO3+δ compounds have been fabricated by the solid-state reaction method with different post-annealing and oxygenation processes. The temperature dependence of resistivity measured at several magnetic fields indicated that all of these samples have an insulator–metal transition with a large negative colossal magnetoresistance (CMR) ratio. The resistivity, maximum CMR ratio and peak position are dominated by the oxygen content. As the oxygen content increases, the resistivity decreases, the peak position shifts to higher temperature and the maximum CMR ratio increases, respectively; meanwhile the peak number in the R–T curve is changed from 1 to 2, then from 2 to 1. The temperature dependencies of magnetization and specific heat show the evidence of magnetic phase transition in these samples. We think that two peaks contributed by the different oxygen-induced ferromagnetic phases resulted in the phase separation of the sample.  相似文献   

7.
The influence of hydrostatic pressure, magnetic field and temperature on resistivity behaviour of bulk and film samples La0.9Mn1.1O3 and La0.56Ca0.24Mn1.2O3 at action of magnetic field and temperature has been analysed. It is established that the maximum of magnetoresistive and the revealed baroresistive, magnetobaroresistive effects coincide at the same temperature Tpp. This temperature is equal to the “metal-semiconductor” phase transition temperature Tms. “Cooling” and “heating” effects of pressure and magnetic field have been revealed. A mutual correspondence of TPH (6.2 K, 1 kbar, 2.7 kOe) influence on polycrystalline sample La0.9Mn1.1O3 resistivity has been determined. The linear change of Tms(P) and Tms(H) in La0.9Mn1.1O3, La0.56Ca0.24Mn1.2O3 resistivity have been found. An importance of the regularities of elastic-deforming correspondence of THP influence on magnetic, resistivity properties, phase transitions and effects was elucidated and explained. An alternating influence of THP and its role in resistivity has been pointed. A correlation between structural, elastic and resistive properties is specified.  相似文献   

8.
We have studied RNiGe3 (R=Y, Ce-Nd, Sm, Gd-Lu) single crystals by measuring crystal structure and stoichiometry, magnetic susceptibility, magnetization, electrical resistivity, magnetoresistance, and specific heat. Clear anisotropies as well as antiferromagnetic ordering in the RNiGe3 series (R=Ce-Nd, Sm, Gd-Tm) have been observed above 1.8 K from the magnetic susceptibility. A metamagnetic transition in this family (except for R=Sm) was detected at 2 K for applied magnetic fields below 70 kOe. The electrical resistivity of this series follows metallic behavior in the high temperature region. Below the antiferromagnetic ordering temperature a significant anisotropy is exhibited in the resistivity and magnetoresistance for different current directions. The anisotropic magnetic, transport, and thermal properties of RNiGe3 compounds are discussed in terms of Ni site occupancy as well as a combination of the effect of formation of a magnetic superzone gap and the crystalline electric field.  相似文献   

9.
《Physics letters. A》1997,233(3):245-250
Magnetoresistance measurements were carried out on amorphous Ni76Mn24 film in the temperature range 1.5–250 K up to magnetic fields of 120 kG, A giant resistivity noise has been observed even in higher magnetic fields, especially at about T = 70 K. Some possible mechanisms are discussed to account for the observed resistivity fluctuations.  相似文献   

10.
The magnetic and electrical transport properties of La0.9Mn0.9M0.1O3 (M=Mn, Zn and Ti) were investigated. The temperature and magnetic field dependence of electrical resistivity (ρ) and dc magnetization were studied. All the compounds are found in rhombohedral structure. The excess oxygen in all three compounds was detected through iodometric titration. A modification in resistivity is observed when M=Mn is replaced by M=Zn and Ti. The high temperature resistivity above TC follow variable range hopping model for both Zn and Ti compounds. For Zn doping, the observation of large field-cool effect and decrease in resistivity at room temperature and is assumed to be due to the implant of Mn4+ in Mn3+ matrix, which favor Mn3+/Mn4+ double exchange. The ferromagnetic behavior below TC for the compound with M=Ti is correlated to the excess oxygen in it, which implants Mn4+ and thus incorporates ferromagnetic interactions. The substitutions lead to a reduction of Tc and magnetization.  相似文献   

11.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS4. The electrical resistivity increased with decreasing temperature according to the exp(T0/T)1/2, an expression derived from variable range hopping with strong electron-electron interaction. The resistivity under a magnetic field was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio ρ(T,0)/ρ(T,H) is 1.5 for H=90 kOe at 100 K and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. A possible mechanism of the large magnetoresistance is discussed.  相似文献   

12.
The electrical resistivity of Hg2.86AsF6 has been studied as a function of temperature. At room temperature, the resistivity along the chain direction is 10?4 Ω-cm with an anisotropy of about 102. This incommensurate linear chain system remains metallic at low temperatures with resistance ratio ?ab(300 K)/ ?ab(1.4 K) ? 3000 and still increasing with no apparent sign of residual resistivity. A large anisotropic magnetic field dependence of the resistivity is observed below 30 K. Near 4 K, the c-axis resistance drops abruptly more than three orders of magnitude, apparently to zero, while ?ab is continuous. The c-axis transition is suppressed in a small magnetic field.  相似文献   

13.
The resistivities of six FexNi80-xP14B6 alloys have been measured between 1.5 and 50 K. It is found that the resistivity variations both below and above the resistivity minima depend on the transition metal composition. The room temperature coefficients of the resistivity indicate the existence of the magnetic contribution to the resistivity.  相似文献   

14.
The effect of Cr doping on magnetic and electrical properties in the bilayer manganites La1.4Sr1.6(Mn1−yCry)2O7 (y=0-0.1) has been investigated. When y≤0.025, Cr doping enhances the three-dimensional magnetic transition temperature TC and the insulator-metal transition temperature TIM as well as decreases the peak resistivity at TIM, and the saturated magnetization decreases slightly. When y≥0.035, TIM decreases gradually accompanied by the increase of peak resistivity, but TC remains nearly constant, and the saturated magnetization decreases heavily. In the whole doping region, the two-dimensional magnetic transition temperature T? monotonously decreases with an increasing of Cr doping level. These results can be explained by considering different magnetic (including ferromagnetic and antiferromagnetic) interactions between Mn ions and Cr ions.  相似文献   

15.
Electrical resistivity and magnetoresistance of CeB6 single crystal have been measured in the temperature range from 1.3 to 300 K under the magnetic field up to 85 kOe. Three characteristic phases are distinguished consistently with other measurements. The Kondo like behaviour in the resistivity observed in the high temperature phase is fitted by the conventional form for the dilute Kondo state with the Kondo temperature TK = 5 ~ 10K and the unitarity limit resistivity ?u? 110 μΩ cm/Ce-atom. The negative magnetoresistance in the middle phase is stronger with increasing magnetic field and with decreasing temperature suggesting rapid destruction of the Kondo state. The magnetoresistance in the low temperature phase exhibits some anomalies suggesting sub-phases corresponding to several kinds of spin ordering.  相似文献   

16.
We have measured the resistivity, magnetoresistance, and thermopower of ceramic manganite samples La1 ? x Ag y MnO3 (yx) doped with silver as functions of temperature (4.2–350 K) and magnetic field (up to 26 kOe). A metal-insulator phase transition is observed in all investigated samples at temperatures close to room temperature. The behavior of the resistivity and thermopower in the high-temperature paramagnetic region is interpreted using the concept of small radius polaron; the activation energy decreases with increasing doping level. The resistivity in the low-temperature ferromagnetic region is approximated by the expression ρFM(T) = ρ0 + AT 2 + BT 4.5 presuming the existence of electron-electron and electron-magnon interactions. A resistivity minimum and a strong magnetoresistive effect are observed at low temperatures. The latter effect is associated with scattering of charge carriers at grain boundaries, which are antiferromagnetically ordered relative to one another. The temperature dependence of thermopower in the magnetically ordered phase is described in the framework of a model taking into account the drag of charge carriers by magnons.  相似文献   

17.
A systematic investigation of structural, magnetic and electrical properties of nanocrystalline La0.67Ba0.33MnO3 materials, prepared by citrate gel method has been undertaken. The temperature-dependant low-temperature resistivity in ferromagnetic metallic (∼50 K) phase shows upturn behavior and is suppressed with applied magnetic field. The experimental data (<75 K) can be best fitted in the frame work of Kondo-like spin-dependant scattering, electron-electron and electron-phonon interactions. It has been found that upturn behavior may be attributed to weak spin disorder scattering including both spin polarization and grain boundary tunneling effects, which are the characteristic features of extrinsic magnetoresistance behavior, generally found in nanocrystalline manganites. The variation of electrical resistivity with temperature in the high temperature ferromagnetic metallic part of electrical resistivity (75K<T<TP) has been fitted with grain/domain boundary, electron-electron and magnon scattering mechanisms, while the insulating region (T>TP) of resistivity data has been explained based on adiabatic small polaron hopping mechanism.  相似文献   

18.
The temperature dependence of the resistivity for composite samples of (1−x)La0.67Ba0.33MnO3+xYSZ(LBMO/YSZ) with different YSZ doping level of x has been investigated in a magnetic field range of 0-7000 Oe, where the YSZ represents yttria-stabilized zirconia (8 mol% Y2O3+92 mol% ZrO2). With increasing YSZ doping level, the range of 0-10%, the metal-insulator transition temperature (TP) decreases. However, the resistivity, specially the low temperature resistivity, increases. Results also show that the YSZ doping level has an important effect on a low field magnetoresistance (LFMR). In the magnetic field of 7000 Oe, a room temperature magnetoresistance value of 20% was observed for the composite with a YSZ doping level of 2%, which is encouraging for potential application of CMR materials at room temperature and low field.  相似文献   

19.
La0.7Sr0.3Mn1−xCoxO3 (x=0, 0.05, 0.1) nanoparticles, prepared by sol-gel method, were studied by means of X-ray diffraction, transmission electron microscopy, resistivity, magnetoresistance, thermal expansion and magnetostriction measurements. Results show that partial substitution of Mn by Co leads to a reduction in lattice parameters, enhancement of resistivity and room temperature magnetoresistance MR, decrease of metal-insulator transition temperature TMI and TC, an increase in thermal expansion coefficient, volume magnetostriction and anisotropic magnetostriction. The latter increases about one order of magnitude with 10% Co substitution. In comparison with Mn ions, the Co ions possess higher anisotropy energy, larger magnetostriction effect, smaller ionic size and spin state transitions with increase in temperature and magnetic field; this suggests that Co substitution leads to double-exchange interaction weakening, resulting in suppression of ferromagnetic long-range order and metallic state and increase of magnetic anisotropy. Furthermore, our samples have a relatively lower TMI and TC, higher resistivity and MR, compared with the reported values for similar compounds with larger particle sizes. This is attributed to the nanometric grain size and spin-polarized tunneling between neighboring grains.  相似文献   

20.
Polycrystalline samples of La0.67Ca0.33MnO3 were prepared by solid-state reactions by varying the pelletization force and the sintering temperature. Lowering the sintering temperature gave rise to smaller grains and increased the overall resistivity of the ceramic. Partial melting was observed in the ceramics sintered at higher temperatures (1400-1500 °C). Additionally, these ceramics showed two distinct resistivity peaks. The resistivity peak near the magnetic transition (TC) was sharp, whereas the second peak was a broad one observed below TC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号