首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron energy loss spectra (ELS) obtained from polycrystalline Pd metal and PdO powder using primary electron energies ranging from 100 to 1150 eV have been obtained and examined in an attempt to gain a better understanding of the origins of the loss features and to assess the utility of ELS in investigations of Pd catalysts. The two sets of ELS spectra differ significantly. The ELS spectra from Pd metal exhibit a predominant peak at 6.5 eV, shown to arise from a surface plasmon excitation, and two broad features at 25.1 and 31.9 eV, which originate from bulk loss processes. The broad features consist of several overlapping losses due mainly to interband transitions from the d-band, though a bulk plasmon excitation is believed to produce a feature near 24 eV. Two distinct peaks are present at 3.7 and 7.6 eV in the ELS spectra obtained from PdO, while a broad region of intensity appears over the range from 20 to 40 eV. The peak at 3.7 eV is attributed to a transition between the top of the valence band and the bottom of the conduction band. The feature at 7.6 eV is broad and arises from several overlapping features that are most likely caused by interband transitions rather than collective excitations. Furthermore, the ELS spectra obtained from PdO and oxidized Pd are also quite different indicating that ELS can provide useful information for determining the bonding states of oxygen on Pd-containing catalysts.  相似文献   

2.
The initial stages of the interaction of oxygen with a Cr(110) surface have been investigated at 300 K by LEED, AES, electron energy loss spectroscopy (ELS), secondary electron emission spectroscopy (SES) and work-function change measurement (Δφ). In the exposure region up to 2 L, the clean-surface ELS peaks due to interband transition weakened and then disappeared, while the ~5.8 and 10 eV loss peaks attributed to the O 2p → Cr 3d transitions appeared, accompanied with a work-function increase (Δφ = +0.19 eV at2L). In the region 2–6 L the work function decreased to below the original clean-surface value (Δφmin = ?0.24 eV at6L), and five additional ELS peaks were observed at ~2, 4, 11, 20 and 32 eV: the 2 and 4 eV peaks are ascribed to the ligand-field d → d transitions of a Cr3+ ion, the 11 eV peak to the O 2p → Cr 4s transition, the 20 eV peak to the Cr 3d → 4p transition of a Cr3+ ion and the 32 eV peak probably to the Cr 3d → 4f transition. A new SES peak at 6.1 eV, being attributed to the final state for t he 11 eV ELS peak, was observed at above 3 L and identified as due to the unfilled Cr 4s state caused by charge transfer from Cr to oxygen sites in this region. In the region 6–15 L the work function increased again (Δφmax = +0.32 eV at15 L), the 33 and 46 eV Auger peaks due to respectively the M2,3(Cr)L2,3(O)L2,3(O) cross transition and the M2,3VV transition of the oxide appeared and the 26 eV ELS peak due to the O 2s → Cr 4s transition was also observed. Above 10 L, the ELS spectra were found to be practically the same as that of Cr2O3. Finally, above 15 L, the work function decreased slowly (Δφ = +0.13 eV at40L). From these results, the oxygen interaction with a Cr(110) surface can be classified into four different stages: (1) dissociative chemisorption stage up to 2 L, (2) incorporation of O adatoms into the Cr selvedge between 2–6 L, (3) rapid oxidation between 6–15 L leading to the formation of thin Cr2O3 film, and (4) slow thickening of Cr2O3 above 15 L. The change in the Cr 3p excitation spectrum during oxidation was also investigated. The oxide growth can be interpreted on the basis of a modified coupled current approach of low-temperature oxidation of metals.  相似文献   

3.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

4.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

5.
H.H. Madden 《Surface science》1981,105(1):129-144
Changes in the valence band density of states (DOS) of a (100) silicon surface that accompany he chemisorption of atomic hydrogen onto that surface are deduced from a study of the changes in the L2,3VV Auger lineshape. Complementary changes in the conduction band DOS are inferred from changes in L2,3VV-core-level characteristic loss spectra (CLS). The chemisorbed hydrogen layer is identified as the dihydride phase from low energy electron diffraction measurements. Upon hydrogen adsorption the DOS at the top of the valence band decreases and new energy levels associated with the Si-H bonds appear lower in the band. Assuming that the Auger signal from the hydrogen covered sample consists of a superposition of a signal from silicon atoms bonded to hydrogen in the dihydride layer and an elemental-Si signal from the substrate, a N(E) difference spectrum with features due only to the dihydride is obtained by subtracting the background corrected, loss deconvoluted L2,3VV signal for a clean (100)Si surface rom the corresponding signal for the hydrogen covered surface. Comparisons of the energy position of the major peak in this difference spectrum with that of the main peak in a gas phase silane Si-L2,3VV spectrum, and of the corresponding Auger energy calculated empirically, indicate a hole—hole interaction energy of ~8 eV for the two-hole final state in the gaseous system and zero for the dihydride surface system. Hydrogen induced changes in the conduction band DOS are less apparent than those of the valence band DOS with only the possibility of a decrease in the DOS at the bottom of the conduction band being inferred from the CLS measurements. Electron stimulated desorption of hydrogen from the dihydride layer is adduced from changes in the Auger lineshape under electron beam irradiation of the surface. Hydrogen induced changes in the near-elastic electron energy loss spectra (ELS) are also reported and compared with previously published ELS results.  相似文献   

6.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

7.
Recently, the electron energy loss spectroscopy (ELS) and secondary electron spectroscopy (SES) of the interaction of oxygen with polycrystalline aluminum were reported for primary energies in the range 30 ? Ep ? 250 eV. Two new transitions were resolved in the ELS spectra (one at 4 eV for clean aluminum and the other at 12 eV for oxide-covered aluminum) for low primary energies (Ep ~ 30 eV). In this paper we report on experiments utilizing a {111} oriented single crystal of aluminum that confirm the existence of these loss peaks for low primary energies and show that the 4 eV peak position for pure aluminum depends on the primary beam energy. This suggests that this low energy loss peak is due to direct nonvertical inter- and intraband transitions which differs from the previous assignment.  相似文献   

8.
Electron energy loss spectroscopy (ELS) with primary energies e0 ? 80 eV has been performed on ultrahigh vacuum (UHV) cleaved nonpolar (11?00) and polar zinc (0001) and oxygen (0001?) surfaces of ZnO to study the adsorption of oxygen and carbon monoxide. Except for CO on the nonpolar surface where no spectral changes in ELS are observed a surface transition near 11.5 eV is strongly affected at 300 K on all surfaces by CO and O2. At 300 K clear evidence for new adsorbate characteristic transitions is found for oxygen adsorbed on the Zn polar surface near 7 and 11 eV. At 100 K on all three surfaces both CO and O2 adsorb in thick layers and produce loss spectra very similar to the gas phase, thus indicating a physisorbed state.  相似文献   

9.
The chemisorbed state of CO on a Cr(110) surface has been investigated at 300 K by electron energy loss spectroscopy (ELS) with the in-situ combined supplementary techniques. The ELS spectrum of the Cr(110) surface after CO adsorption is characterized by the peaks at 2, 4.4, 6–7, 9, 11, 14.5, 19 and 23 eV, and is found to be practically the same as that of the oxygen covered surface. The C-KLL Auger spectra obtained in the range 0.1–900 L CO agree with those of metal carbides. These results are considered to indicate that CO is dissociatively chemisorbed on the Cr(110) surface throughout the whole exposure region examined. The average sticking probability of CO on Cr(110) is 0.7 at below 0.5 L, and the maximum work function increase at 1 L is ~0.1 eV. The adsorbed state of O atoms produced from dissociative adsorption of CO is also discussed.  相似文献   

10.
The secondary electron (SE) spectrum (0 < E < 50 eV) has been analysed by means of a CMA. Samples were clean aluminum, aluminum becoming carbon contaminated, sintered graphite powder, electro chemically deposited polymer on platinum and monocrystals of silicon carbon contaminated. When the clean Al surface is becoming carbon contaminated a quick decrease of surface plasmon and bulk plasmon losses is observed whereas a main characteristic energy loss peak (ELS) at 20 eV and a secondary electron peak at 20 eV appear simultaneously. Both peaks are very sensitive general features of carbon contaminated surfaces. The main loss peak is attributed to the excitation of the carbon-carbon bounds (σ → σ1) as already proposed in the transmission ELS. The few eV change of the loss peak energy of various carbon compounds may correspond to slightly different carbon-carbon distances. The 20 eV secondary electrons could be produced by the relaxation of the excited state (σ1 → σ transition) via an Auger process. The cross section for molecular electronic excitation is higher than that of atomic ionization for inner level. The loss peak is as intense as the SE peak and higher by more than two orders of magnitude than the C KLL Auger peak. The modification of secondary emission under carbon contamination has been observed on a silicon sample by Scanning Electron Microscopy (SEM) in the Secondary Electron Image (SEI) mode.  相似文献   

11.
Electron energy-loss spectra of a Ge(111) surface covered with Na, K or Cs in the submonolayer range have been measured. The presence of alkali metal (a.m.) causes the empty dangling-bond surface states to vanish and results in the creation of new interface states. The filling of the latter is a decreasing function of the ionicity of the a.m.—Ge bond.It was found that the energy shift of transitions involving a.m. s resonance as the final state is a linear function of a.m. coverage.  相似文献   

12.
Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), electron energy loss (ELS) and ultraviolet photoemission spectroscopies (UPS) were used to study the structures, compositions and electron state distributions of clean single crystal faces of titanium dioxide (rutile). LEED showed that both the (110) and (100) surfaces are stable, the latter giving rise to three distinct surface structures, viz. (1 × 3), (1 × 5) and (1 × 7) that were obtained by annealing an argon ion-bombarded (100) surface at ~600,800 and 1200° C respectively. AES showed the decrease of the O(510 eV)Ti(380 eV) peak ratio from ~1.7 to ~1.3 in going from the (1 × 3) to the (1 × 7) surface structure. Electron energy loss spectra obtained from the (110) and (100)?(1 × 3) surfaces are similar, with surface-sensitive transitions at 8.2, 5.2 and 2.4 eV. The energy loss spectrum from an argon or oxygen ion bombarded surface is dominated by the transition at 1.6 eV. UPS indicated that the initial state for this ELS transition is peaked at ?0.6 eV (referred to the Fermi level EF in the photoemission spectrum, and that the 2.4 eV surface-sensitive ELS transition probably arises from the band of occupied states between the bulk valence band maximum to the Fermi level. High energy electron beams (1.6 keV 20 μA) used in AES were found to disorder clean and initially well-ordered TiO2 surfaces. Argon ion bombardment of clean ordered TiO2 (110) and (100)?(1 × 3) surfaces caused the work function and surface band bending to decrease by almost 1 eV and such decrease is explained as due to the loss of oxygen from the surface.  相似文献   

13.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

14.
The oxygen chemisorption on an alkali (Na, K, Cs) covered Ni(100) surface and its initial oxidation were studied by Auger and electron energy loss spectroscopy (ELS). It was found that in the presence of an alkali metal, the sticking coefficient S remains unity up to a given oxygen coverage of θOcwhose value depends on the alkali overlayer concentration and the ionicity of the Ni-alkali metal bond. At a given oxygen coverage, the line shapes of Auger and loss spectra are almost the same for alkali-covered and clean Ni(100), which suggests that alkali metals cause no change in the character of the Ni-O bond. The effect of alkali metals is associated with increasing electron charge in the surface region, which facilitates oxygen chemisorption. The enhanced surface oxygen concentration in the presence of an alkali metal results in the formation of an oxide phase at lower oxygen exposures than is the case of clean Ni surfaces.  相似文献   

15.
We present first principle total energy calculation of Pt induced reconstructions on Ge(001)-(1×2) surface with dimerization. Study was undertaken using localized orbitals basis set DFT using SIESTA to compare pure Ge dimerized Ge(001)-(1×2) surface with 0.5 and 1.0 Pt covered dimerized Ge(001)-(1×2) surface with the possibility of homo (Ge-Ge and Pt-Pt) and hetro (Pt-Ge) dimers. From total energy calculation results we calculated dimer bond lengths, buckling angles and formation energy of dimers on Ge(001)-(1×2) surface. By calculating the formation energy of different configurations we find that Ge-Ge buckled dimerized surface has least (−1.23 eV/dimer) and Pt-Pt symmetric dimerized surface has largest (+0.09 eV/dimer) formation energy with respect to unreconstructed surface. We further calculated the electronic DOS and band structure of Ge dimerized as well as Pt dimerized surface to see the change in semiconducting behavior on dimerization. By comparing the DOS and electronic band structure of homo Ge dimerized surface, we found metallicity of Ge(001)-(1×2) surface results from dimer formation. Also by comparing the electronic band structure of homo Ge dimerized surface with unreconstructed surface we find that less number of bands crossing the Fermi level which is perhaps due to the saturation of one dangling bond per Ge surface atom. By introducing Pt at 0.5 and 1.0 coverage in place of Ge, except for homo Pt buckled dimerized surface having 1.0 coverage of Pt, we find in all other cases increase in number of bands are crossing the Fermi level, indicating strong metallic behavior of Ge(001)-(1×2) surface.  相似文献   

16.
The yield and energy distributions of Cs atoms emerging from cesium layers, which are adsorbed on tungsten coated with a thin germanium film (1-to 2-monolayers thick), have been measured as a function of the incident electron energy, the amount of adsorbed cesium, and the substrate temperature. The measurements were performed by the time-of-flight technique with a surface ionization detector. At low cesium coverages (Θ < 0.1), the Cs atom appearance threshold at a substrate temperature T = 160 K is ~24 eV, which correlates with the Cs 5s-level ionization energy. As the electron energy is increased, the yield passes through a broad plateau and reaches saturation. The signal intensity in the plateau region decreases gradually with increasing cesium coverage and tends to zero for Θ > 0.14. For Θ ≥ 0.15, the cesium atom appearance threshold shifts to ~30 eV, which corresponds to the Ge 3d-level ionization energy and the plateau is replaced by a resonance peak at ~38 eV, which can be identified with the ionization energy of the W 5p 3/2 level. This peak is observed only for Θ < 0.3 and T = 160 K. For Θ ≥ 0.3, there appears a resonance peak at ~50 eV, and for Θ ≥ 0.5, another resonance peak appears at ~80 eV. These peak positions correlate with the ionization energies of the W 5p 1/2 and W 5s levels, and their intensity is maximum at Θ = 1. The Cs atom energy distributions for Θ < 0.15 consist of a bell-shaped peak with a maximum at ~0.55 eV, and those for Θ ≥ 0.15 contain two nearly resolved maxima, a broad one peaking at ~0.5 eV and a narrow one at ~0.35 eV. The above results argue for the existence of three channels of Cs atom desorption. One channel involves reverse motion of the Cs2+ ion; another channel, neutralization of the adsorbed Cs+ ion following the Auger decay of a vacancy in the Ge atom; and the third channel involves desorption of a CsGe molecule as it is repelled from a W core exciton.  相似文献   

17.
The adsorption of Na and the coadsorption of Na and O2 on Ag(110) have been studied by XPS and UPS. Adsorption of Na results in a rapid decrease in the work function. Δφ reaching a limiting value of ?2.0 eV at θNa = 0.5 and thereafter remaining constant. In the coverage range 0 < θNa <1 adsorption of O2 onto the Na dosed surface always results in an increase in the work function to an almost constant value of Δφ ~ ?1 eV. At the same time the XPS data show that the Na/O stoichiometry of the oxygen saturated surface remains essentially constant and independent of the initial Na dose. Calibration experiments using sodium formate as a standard compound indicate that this surface phase has the stoichiometry Na2O. For θNa > 1 there is a sharp change in behaviour; the work function of the oxygen saturated surface begins to decrease rapidly, and eventually falls below the value for the Na covered surface itself at θNa ~ 1.5. The XP spectrum now shows the appearance of a new oxygen peak which increases in intensity as θNa increases beyond unity. The UP spectra indicate that the binding energy of the surface orbital derived from Na (3s) is increased by ~6.7 eV as compared with the free atom value, and the emission at ~3 eV below EF, which is associated with surface oxygen is not greatly affected by the presence of Na. These results are discussed against the background of information already available from LEED, Auger, and thermal desorption studies, and we attempt to give a consistent interpretation of the properties of the system at coverages both below and above one monolayer.  相似文献   

18.
Electronic properties and chemical composition of Ge films grown by molecular beam epitaxy on GaAs (110) surfaces were studied in situ by electron energy-loss spectroscopy. The loss peaks involving core-level excitations proved that As atoms segregate at the surface of the growing film. The well known 20 eV loss peak of the clean GaAs (110) surface, being attributed to transitions from Ga(3d) to Frenkel-type excitons of dangling-bond surface states, was found to persist, slightly shifted to 19.7 eV, with the growing Ge (110) film. Since the Ga coverage amounts to below approximately 0.05 of a monolayer this transition seems to contain a strong intraatom contribution.  相似文献   

19.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

20.
The effect of adsorbed Na on the surface conductivity, Δσ, and surface recombination velocity, S, of a clean (114)Ge surface is studied. The surface conductivity is a complicated function of the surface Na concentration, NNa; at NNa ≈ 1.5 × 1013 atoms/cm2, it has a minimum; at ca. (3–5) × 1014atoms/cm2, it has a maximum. For a monolayer coverage (ca. 7.2 × 1014atoms/cm2) the values of Δσ are not much different from those of a clean Ge surface. The surface recombination velocity is a three-valued function of the surface potential, US (calculated from the Δσ values), depending on the Na overlayer coverage and heat treatment of the sample. Three different surface structures (LEED data) were found to correspond to the three S versus US curves reported here. Thermal desorption studies show that Na is desorbed in a wide temperature interval. Two peaks have been isolated, studied and discussed. At low coverages a single peak is found to exist, which obeys the first-order desorption kinetics, with a desorption energy of (52 ± 3)kcal/mol. This peak is attributed to the surface defects. For coverages close to14 monolayer a new peak was observed in the spectrum. The desorption energy of this binding state exceeds that of all the other states. When the overlayer coverage is increased, this peak is shifted to higher temperatures, as predicted for a half-order desorption kinetics. By comparing also with LEED data, it may be concluded that this most tightly bound sodium has formed on the Ge(111) surface patches of an ordered structure in which one Na atom is bonded to three Ge atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号