首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探讨经胸超声心动图(TTE)诊断慢性风湿性心脏病(RHD)的效果,本文选择了112例慢性RHD患者进行TTE检查,观察了TTE诊断慢性RHD瓣叶类型、狭窄、关闭不全、左房血栓的符合率。结果显示TTE诊断RHD瓣膜类型、瓣膜狭窄、关闭不全和左房血栓与介入/术中所见/病理结果一致性较高。本文证实TTE诊断慢性RHD瓣叶病变类型、瓣膜狭窄和关闭不全、左房血栓均具有较高检出率和诊断准确率。  相似文献   

2.
Liu X  Wu Y  Zehner ZE  Jackson-Cook C  Ware JL 《Electrophoresis》2003,24(19-20):3445-3453
Critical alterations in proteins that accompany or control the aggressiveness of human prostate cancers remain poorly defined. Previously we demonstrated that the highly tumorigenic, metastatic human prostate cell line M12 was converted to a slow growing, poorly tumorigenic cell line by introduction of an intact human chromosome 19, generating the M12 (F6) hybrid cells. The objective of this report was to identify changes in the protein profile of these M12(F6) microcell hybrid cells. A combination of two-dimensional gel electrophoresis and matrix assisted laser desorption-time of flight-mass spectroscopy was used to compare proteins made by these two cell lines. No consistently increased proteins were identified. However, seven proteins were reproducibly reduced more than twofold: vimentin, hsp90, ATP synthase, 26S protease regulatory subunit, heterogeneous nuclear ribonucleoprotein, T-Complex protein 1 beta, and alpha-1 tubulin. The striking reduction in vimentin protein was accompanied by significantly decreased vimentin mRNA, revealed by Northern blotting. Our findings implicate reduced vimentin in the conversion of these tumorigenic prostate epithelial cells into slow growing, less aggressive cells. These studies demonstrate that application of proteomic analysis to specific problems in an experimental context can yield biologically relevant information about the prostate cancer cell phenotype.  相似文献   

3.
This communication briefly describes how a human heart two-dimensional electrophoresis (2-DE) protein database is being established in our laboratory. The database contains more than 1500 polypeptides and approximately fifty proteins from 2-DE gels of human myocardial tissue have been characterised. Information about the proteins has been compiled including molecular weight (M(r)), isoelectric point (pI), sample spot (SSP) number, protein name, partial sequence, and antibody reacting with the protein. The first stage of this project involves the investigation of protein with pIs in the range pH 4-7. Future studies will employ immobilised pH gradient (IPG) gels as the first dimension of the 2-DE to examine basic proteins. The ultimate goal of this project is to establish a global picture of human heart protein expression in both normal and disease conditions.  相似文献   

4.
Tumor necrosis factor-alpha inhibitors are widely and successfully used to treat rheumatic diseases. However, significant side effects have been reported. To detect the potential off-target activities of such inhibitors we characterized two therapeutic antibodies (adalimumab, infliximab) and one receptor fusion protein (etanercept) on protein biochips (UNIchip AV-400) containing a printed serial dilution of tumor necrosis factor-alpha and about 384 different human proteins. Etanercept binds to ten proteins (affinity: 20-33% of tumor necrosis factor-alpha recognition), and six of these proteins are related to ribosomal proteins. Interestingly, adalimumab binds to the same six proteins related to ribosomal proteins (affinity: 12-18%) as well as to four proteins crucially involved in ribosomal protein synthesis. Alignment of protein sequences indicates no significant sequence homology between these ten proteins bound by the biological drugs with the highest off-target activities. Taken together, our in vitro results demonstrate that a significant number of proteins are recognized by tumor necrosis factor-alpha inhibitors and are related to ribosome biogenesis.  相似文献   

5.
A molecular weight map of the protein content of ES2 human clear cell ovarian carcinoma cells has been produced using a two-dimensional (2-D) liquid separations/mass mapping technique. This method uses a 2-D liquid separation of proteins from whole cell lysates coupled on-line to an electrospray ionization-time of flight (ESI-TOF) mass spectrometer to map the accurate intact molecular weight (M(r)) of the protein content of the cells. The two separation dimensions involve the use of liquid isoelectric focusing as the first phase and nonporous silica reversed-phase high-performance liquid chromatography (HPLC) as the second phase of separation. The detection by ESI-TOF-MS provides an image of pI versus M(r) analogous to 2-D gel electrophoresis. Each protein is then identified based upon matrix-assisted laser desorption/ionization (MALDI)-TOF-MS peptide mapping and intact M(r) so that a standard map is produced against which other ovarian carcinoma cell lines can be compared. The accurate intact M(r) together with the pI fraction, and peptide map serve to tag the protein for future interlysate comparisons. An internal standard is also used to provide a means for quantitation for future interlysate studies. In the ES2 cell line under study it is shown that nearly 900 M(r) bands are detected over 17 pI fractions from pH 4 to 12 and a M(r) range up to 85 kDa and that around 290 of these bands can be identified using mass spectrometric based techniques. The protein M(r) is detected within an accuracy of 150 ppm and it is shown that many of the proteins in this human cancer sample are modified compared to the database. The protein M(r) map may serve as a highly reproducible standard Web-based method for comparing proteins from related human cell lines.  相似文献   

6.
The purpose of this study is to determine the feasibility of the direct matrix-assisted laser desorption/ionization (MALDI) identification of proteins in fixed T47D breast cancer cells and murine brain tissues. The ability to identify proteins from cells and tissue may lead to biomarkers that effectively predict the onset of defined disease states, and their dynamic behavior could be an important hint for drug target discoveries. Direct tissue application of trypsin allows protein identification in cells and tissues, while maintaining spatial integrity and intracellular organization. Using a chemical printer, matrix was co-registered on trypsinized human T47D breast cancer cells and cryo-preserved sections of murine brain tissue, followed by MALDI post-source decay (PSD) or MALDI collision-induced dissociation (CID), respectively. Mass-to-charge (m/z) data from the cells and brain tissues were processed using Mascot software interrogation of the National Center for Biotechnology Information (NCBI) database. Histone H2B was identified from cultured T47D human breast cancer cells. Tubulin beta2 was identified from mouse brain cortex following an induced stroke. These results suggest that MALDI PSD/CID, combined with bioinformatics, can be used for the direct identification of proteins from cells and tissues. Refinements in preparation techniques may improve this approach to provide a tool for quantitative proteomics and clinical analysis.  相似文献   

7.
Topographical features ranging from micro- to nanometers can affect cell orientation and migratory pathways, which are important factors in tissue engineering and tumor migration. In our previous study, a convective assembly of bacteriophage M13 resulted in thin films which could be used to control the alignment of cells. However, several questions regarding its underlying reasons to dictate cell alignment remained unanswered. Here, we further study the nanometer topographical features generated by the bacteriophage M13 crystalline film, which results in the alignment of the cells and extracellular matrix (ECM) proteins. Sequential imaging analyses at micro- and nanoscale levels of aligned cells and fibrillar matrix proteins were documented using scanning electron microscopy and immunofluorescence microscopy. As a result, we observed baby hamster kidney cells with higher degree of alignment on the ordered M13 substrates than NIH-3T3 fibroblasts, a difference which could be attributed to the intrinsic nature of the cells' production of ECM proteins. The results from this study provide a crucial insight into the topographical features of a biological thin film, which can be utilized to control the orientation of cells and surrounding ECM proteins.  相似文献   

8.
We describe here a new approach for the identification of affinity-bound proteins by proteolytic generation and mass spectrometric analysis of their antibody bound epitope peptides (epitope excision). The cardiac muscle protein troponin T was chosen as a protein antigen because of its diagnostic importance in myocardial infarct, and its previously characterised epitope structure. Two monoclonal antibodies (IgG1-1B10 and IgG1-11.7) raised against intact human troponin T were found to be completely cross reactive with bovine heart troponin T. A combination of immuno-affinity isolation, partial proteolytic degradation (epitope excision), mass spectrometric peptide mapping, and database analysis was used for the direct identification of Tn T from bovine heart cell lysate. Selective binding of the protein was achieved by addition of bovine heart cell lysate to the Sepharose-immobilised monoclonal antibodies, followed by removal of supernatant material containing unbound protein. While still bound to the affinity matrix the protein was partially degraded thereby generating a set of affinity-bound, overlapping peptide fragments comprising the epitope. Following dissociation from the antibody the epitope peptides were analysed by matrix assisted laser desorption-ionisation (MALDI) and electrospray-ionisation (ESI) mass spectrometry. The peptide masses identified by mass spectrometry were used to perform an automated database search, combined with a search for a common "epitope motif". This procedure resulted in the unequivocal identification of the protein from biological material with only a minimum number of peptide masses, and requiring only limited mass-determination accuracy. The dramatic increase of selectivity for identification of the protein by combining the antigen-antibody specificity with the redundancy of peptide sequences renders this "affinity-proteomics" approach a powerful tool for mass spectrometric identification of proteins from biological material.  相似文献   

9.
A recombinant antibody-binding protein originating from streptococcal protein G was modified with lipid in a site-directed manner by genetic engineering. The resulting lipoprotein was incorporated into the surface of liposomes by simple mixing. Immunoliposomes were then prepared by binding anti-IgG antibodies molecules onto the surface of proteoliposome via the lipid-anchored streptococcal protein G. Either small fluorophores or fluorescently labeled proteins were encapsulated into prepared immunoliposomes, and these molecular tracers could be delivered into cells whose surfaces were marked with specific antibodies.  相似文献   

10.
In the last decade, mass spectrometry has been employed by more and more researchers for identifying the proteins in a macromolecular complex as well as for defining the surfaces of their binding interfaces. This characterization of protein-protein interfaces usually involves at least one of several different methodologies in addition to the actual mass spectrometry. For example, limited proteolysis is often used as a first step in defining regions of a protein that are protected from proteolysis when the protein of interest is part of a macromolecular complex. Other techniques used in conjunction with mass spectrometry for determining regions of a protein involved in protein-protein interactions include chemical modification, such as covalent cross-linking, acetylation of lysines, hydrogen-deuterium exchange, or other forms of modification. In this report, both limited proteolysis and chemical modification were combined with several mass spectrometric techniques in efforts to define the protein surface on the HIV core protein, p24, recognized by two different monoclonal human antibodies that were isolated from HIV+ patients. One of these antibodies, 1571, strongly inhibits the CD4+ T cell proliferative response to a known epitope (PEVIPMFSALSEGATP), while the other antibody, 241-D, does not inhibit as strongly. The epitopes for both of these antibodies were determined to be discontinuous and localized to the N-terminus of p24. Interestingly, the epitope recognized by the strongly inhibiting antibody, 1571, completely overlaps the T cell epitope PEVIPMFSALSEGATP, while the antibody 241-D binds to a region adjacent to the region of p24 recognized by the antibody 1571. These results suggest that, possibly due to epitope competition, antibodies produced during HIV infection can negatively affect CD4+ T cell-mediated immunity against the virus.  相似文献   

11.
The 5′ amino-labeled DNA probe complementary to mga gene of Streptococcus pyogenes was immobilized on carboxylated multiwall carbon nanotubes electrode and hybridized with 0.1–100 ng/6 μl single-stranded genomic DNA (ssG-DNA) of S. pyogenes from throat swab of suspected rheumatic heart disease (RHD) patients. Electrochemical response was measured by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance (EI). The sensitivity of the sensor was 106.03?(μA/cm2)/ng and limit of detection (LOD) was found 0.014 ng/6 μl with regression coefficient (R 2) of 0.921 using DPV. The genosensor was characterized by FTIR and SEM, and electrode was found stable for 6 months on storage at 4 °C with 5–6 % loss in initial DPV current. mga genosensor is the first report on RHD sensor which can save life of several suspected patients by early diagnosis in 30 min.  相似文献   

12.
13.
Su TR  Lin JJ  Chiu CC  Chen JY  Su JH  Cheng ZJ  Hwang WI  Huang HH  Wu YJ 《Electrophoresis》2012,33(7):1139-1152
The extracts from soft corals have been increasingly investigated for biomedical and therapeutic purposes. The aim of this study is to examine and analyze the anti-tumor effects of the genus Sinularia extract sinularin on A2058 melanoma cells using MTT assay, cell migration assay, wound healing assay, flow cytometric analysis, and proteomic analysis. Sinularin dose-dependently (1-5 μg/mL) inhibited melanoma cell proliferation while the treatment at identical concentrations suppressed cell migration. Sinularin dose-dependently enhanced apoptotic melanoma cells and caused tumor cell accumulation at G2/M phase, indicating that sinularin exerts apoptosis-induced and cell cycle-delayed activities in A2058 melanoma cells. Comparative proteomic analysis was conducted to investigate the effects of sinularin at the molecular level by comparison between the protein profiling of melanoma cells treated with sinularin and without the treatment. Thirty-five differential proteins (13 upregulated and 22 downregulated) concerning the treatment were identified by liquid chromatography-tandem mass spectrometry. Proteomic data and Western blot displayed the levels of several tumor inhibitory or apoptosis-associated proteins including annexin A1, voltage-dependent anion-selective channel protein 1 and prohibitin (upregulated), heat shock protein 60, heat shock protein beta-1, and peroxiredoxin-2 (downregulated) in A2058 melanoma cells exposed to sinularin. Increased expression of p53, cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, p21, and Bax and decreased expression of Bcl-2 in sinularin-treated melanoma cells suggest that the anti-tumor activities of sinularin against melanoma cells are particularly correlated with these pro-apoptotic factors. These data provide important information for the mechanisms of anti-tumor effects of sinularin on melanoma cells and may be helpful for drug development and progression monitoring of human melanoma.  相似文献   

14.
In immunological responses, controlling excessive T cell activity is critical for immunological homeostasis maintenance. Diketoacetonylphenalenone, derived from Hawaiian volcanic soil-associated fungus Penicillium herquei FT729, possesses moderate anti-inflammatory activity in RAW 264.7 cells but its immunosuppressive effect on T cell activation is unknown. In the present study, diketoacetonylphenalenone (up to 40 μM) did not show cytotoxicity in T cells. Western blot analysis showed treatment with diketoacetonylphenalenone did not alter the expression of anti-apoptotic proteins. Pretreatment with diketoacetonylphenalenone suppressed the interleukin-2 production in activated T cells induced by T cell receptor-mediated stimulation and PMA/A23187. The CFSE-proliferation assay revealed the inhibitory effect of diketoacetonylphenalenone on the proliferation of T cells. The expression of surface molecules on activated T cells was also reduced. We discovered the suppression of the TAK1-IKKα-NF-κB pathway by pretreatment with diketoacetonylphenalenone abrogated mitogen-activated protein kinase (MAPK) signaling in activated T cells. These results suggest that diketoacetonylphenalenone effectively downregulates T cell activity via the MAPK pathway and provides insight into the therapeutic potential of immunosuppressive reagents.  相似文献   

15.
The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 μM belinostat were analysed by 2‐D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC‐MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto‐oncogene proteins p53, Myc, activator protein 1, and c‐fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed.  相似文献   

16.
The secretome of cells and tissues may reflect a broad variety of pathological conditions and thus represents a rich source of biomarkers. The identity of secreted proteins, usually isolated from cell supernatants or body fluids, is hardly accessible by direct proteome analysis, because these proteins are often masked by high amounts of proteins actually not secreted by the investigated cells. Here, we present a novel method for the specific detection of proteins secreted by human tissue specimen as well as cultured cells and chose liver as a model. The method is based on the metabolic labelling of proteins synthesized during a limited incubation period. Then, the cell supernatant is filtered, precipitated, and subjected to two-dimensional gel electrophoresis. Whereas fluorography detected a large number of proteins derived from residual plasma and dead cells, the autoradiographs selectively displayed genuinely secreted proteins. We demonstrate the feasibility of this approach by means of the secretomes of the hepatocellular carcinoma-derived cell line HepG2 and human liver slices. The selective identification of cell- and tissue-specific protein secretion profiles may help to identify novel sets of biomarkers for wide clinical applications.  相似文献   

17.
We have recently described a cell type-specific surface (SF) antigen that is deleted in chick fibroblasts transformed by Rous sarcoma virus, SF antigen is a major surface component and makes up about 0.5% of the total protein on normal cultured fibroblasts. The antigen is shed from normal cells and is present in circulation (serum, plasma), and in vivo, also, in tissue boundary membranes. The molecular equivalents of both cellular and serum SF antigen are distinct, large polypeptides, one of which (SF210, MW 210,000) is glycosylated and, on the cell surface, highly susceptible to proteases and accessible to surface iodination. Immunofluorescence and scanning electron microscopy have indicated that the antigen is located in fibrillar structures of the cell surface, membrane ridges, and processes. Human SF antigen is present in human fibroblasts and in human serum. We have recently shown that human SF antigen is identical to what has been known as the "cold-insoluble globulin" and that it shows affinity toward fibrin and fibrinogen. Our results also indicate that loss of the transformation-sensitive surface proteins is due not to loss of synthesis but to lack of insertion of the protein in the neoplastic cell surface. Both normal and transformed cells produce the SF antigen, but the latter do not retain it in the cell surface. The loss of SF antigen, a major cell surface component, from malignant cells creates an impressive difference between the surface properties of normal and malignant cells. The possible significance of SF antigen to the integrity of the normal membrane and its interaction to surrounding structures is discussed.  相似文献   

18.
Congenital heart disease (CHD) is the most common type of birth defect, but its underlying molecular mechanisms remain unidentified. Previous studies determined that Homo sapiens LYR motif containing 1 (LYRM1) is a novel nucleoprotein expressed at the highest level in adipose tissue and in high levels in heart tissue. The LYRM1 gene may play an important role in the development of the human heart. This study was designed to identify the biological characteristics of the LYRM1 gene in heart development. On the basis of expression-specific differentiation markers identified with quantitative real-time RT-PCR and the morphology of LYRM1-overexpressing cells during differentiation, ectopic expression was not found to significantly affect differentiation of P19 cells into cardiomyocytes. MTT assays and cell cycle analysis showed that LYRM1 dramatically increases the proliferation of P19 cells. Furthermore, data from annexin V-FITC binding and caspase-3 activity revealed that LYRM1 can inhibit the apoptosis of P19 cells. Our data suggest that LYRM1 might have the potential to modulate cell growth, apoptosis, and heart development.  相似文献   

19.
Two-dimensional gel electrophoresis (2-DE) and tandem mass spectrometry were successfully used for determination of a phosphorylation site of stathmin induced by heat stress to Jurkat cells of a human T lymphoblastic cell line. The cells were incubated for 30 min at 41 degrees C up to 45 degrees C in a serum free 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffered culture medium. The intracellular soluble proteins were separated by 2-DE, and some of the proteins increased their abundance by heat stress. Those proteins were identified to be calmodulin, protein kinase C substrate, thymosin beta-4 and F-actin capping protein beta-subunit by peptide mass fingerprinting (PMF) with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). On the contrary, protein phosphatase 2C gamma-isoform, nucleophosmin, translationally controlled tumor protein, Rho GDP-dissociation inhibitor-1, eukaryotic translation initiation factors 5A and 3A subunit 2, ubiquitin-like protein SMT 3B and chloride intracellular channel protein-1 were decreased their abundance. A protein spot of M(r) 18,000 and pI 5.9 was markedly increased at temperatures higher than 43 degrees C at which the cells were led to apoptosis. The spot was identified to be stathmin of a signal relay protein which has a function of sequestering microtubule. MALDI-quadrupole ion trap (QIT)-TOF-MS/MS and immunoblotting with a monoclonal antibody specific for a phosphorylation site of stathmin showed that the spot was a phosphorylated stathmin at serine 37 (Ser 37). The phosphorylation was suppressed by treatment of cells with olomoucine of an inhibitor specific for cyclin dependent kinase (Cdk-1). These results strongly suggest that heat stress activates Cdk-1 which phosphorylates Ser 37 on the stathmin molecule. The phosphorylation may cause the functional loss of stathmin for dynamic microtubule assembly and leads Jurkat cells to cell cycle arrest and apoptosis.  相似文献   

20.
Human T lymphocytes were found to be highly radiosensitive and complex cellular responses including apoptosis could be induced upon exposure to X‐ray irradiation. However, the mechanism of apoptosis associated with irradiation was not clear. In this study, a proteomic method was applied to investigation on alteration of proteome of human T‐lymphocyte cells after irradiation. The Jurkat cells were irradiated with 4 Gy X‐ray and the cell lysates were collected at different times after irradiation (6, 12, 18, 24 and 48 h). The whole proteins were separated and quantified by two‐dimensional fluorescence difference gel electrophoresis, and then the differentially expressed proteins were identified by mass spectrometry. 4 proteins exhibited significant irradiation‐induced difference in abundance, including L‐plastin, bifunctional purine biosynthesis protein, tubulin beta chain, beta‐actin. Differentially expressed proteins were reported to be directly or indirectly involved in the function of human T lymphocyte. Thus, this study might provide clues to identify proteins with biological significance related to irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号