首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stress-intensity factors for a semi-infinite plane crack with a wavy front are determined when the crack faces are subjected to normal and shearing tractions. The results are derived using asymptotic methods and are valid to O(2) where =A/1; A is the amplitude and is the wavelength of the wavy front. The normal and shearing tractions are in the form of line loads parallel to the crack front.The results are then used to evaluate, in a qualitative manner, the growth characteristics of a semi-infinite plance crack with a wavy front under combined mode loading. This provides a possible explanation of crack front segmentation observed experimentally.  相似文献   

2.
The time dependent differential equation for the local wire temperature of a constant temperature anemometer is solved by a perturbation method in case of a harmonically changing heat transfer coefficient. The time dependent power supply to the wire follows from the condition of constant mean temperature imposed by the anemometer circuit. The influence of thin supporting wires, or copper-plated wire ends, is evaluated also. Numerical results are given for a number of cases that are of practical interest.Nomenclature c specific heat - D diameter of the wire - D u diameter of the copper-plated ends of the wire - f D - g I 2 r 0 - I electric current - L length of the wire - P 1/4D 2 c - q 1/4D 2 - r resistance of the wire per unit length at temperature T' - r 0 resistance of the wire per unit length at temperature T - T T' – T - T' local temperature of the wire - T ambient temperature - T w constant mean temperature imposed by the anemometer circuit - T u local difference between the temperature of the supporting wire and the ambient temperature - t time - x axial coordinate with the origin in the middle of the wire - heat transfer coefficient - temperature coefficient of the resistance - small parameter - time constant = cD 2/4D - u time constant of the copper-plated ends cD u 2 /4D u - thermal conductivity of wire material - u thermal conductivity of the copper-plated wire ends - density - circular frequency  相似文献   

3.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

4.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

5.
Summary Creeping flow past a sphere is solved for a limiting case of fluid behaviour: an abrupt change in viscosity.List of Symbols d ij Component of rate-of-deformation tensor - F d Drag force exerted on sphere by fluid - G (d) Coefficients in expression for ij in terms of d ij - G YOJK (d) Coefficients in power series representing G (d) - R Radius of sphere - r Spherical coordinate - V Velocity of fluid very far from sphere - v i Component of the velocity vector - x Dimensionless radial distance, r/R - x i Rectangular Cartesian coordinate - Dimensionless quantity defined by (26) - (d) Potential defined by (7) - Value of x denoting border between Regions 1 and 2 as a function of - 1, 2 Lower and upper limiting viscosities defined by (10) - Spherical coordinate - * Value of for which =1 - Value of denoting border between regions 1 and 2 as a function of x - Newtonian viscosity - ij Component of the stress tensor - Spherical coordinate - 1, 2 Stream functions defined by (12) and (14) - Second and third invariants of the stress tensor and of the rate-of-deformation tensor, defined by (3)  相似文献   

6.
The wedge subjected to tractions: a paradox re-examined   总被引:2,自引:0,他引:2  
The classical two-dimensional solution for the stress distribution in an elastic wedge loaded by a uniform pressure on one side of the wedge becomes infinite when the wedge angle 2 satisfies the equation tan 235-1. This paradox was resolved recently by Dempsey who obtained a solution which is bounded at 235-2. However, for not equal but very close to 235-3, the classical solution can still be very large as approaches 235-4. In this paper we re-examine the paradox. We obtain a solution which remains bounded as approaches 235-5 and reproduces Dempsey's solution in the limit 235-6. At 235-7 the stress distribution contains a (ln r) term for general loadings. The (ln r) term disappears under a special loading and the stresses are bounded for all r. Moreover, the solution is not unique. In other words, for the wedge angle 235-8 under a special loading, infinitely many solutions exist for which the stresses are bounded for all r. We also obtain solutions which are bounded and approach Dempsey's solutions when 2= and 2. Again, under a special loading infinitely many solutions exist for which the stresses are bounded for all r. Care has been exercised in this paper to present the solutions in a form in which the terms r - and ln r are replaced by R -gl and ln R where R=r/r 0is the dimensionless radial distance and r 0 is an arbitrary constant having the dimension of length.  相似文献   

7.
The boundary-layer flow generated on an impermeable vertical surface in a saturated porous medium is considered in the case when wall heating at a rate proportional tox is switched on at timet=0, (x measures distance along the wall and is a constant). The similarity equations which hold in the limit of larget are discussed and are shown to have a solution only for >–1. The behaviour of the solution as –1 and as is obtained. Numerical solutions of the initial value problem are then obtained for a range of values of . A direct numerical integration is possible for 1, while an iterative procedure is required for <1, with the numerical scheme becoming unstable for =–0.5.
Grenzschichtströmung an einer plötzlich aufgeheizten vertikalen Fläche, in einem gesättigten porösen Medium
Zusammenfassung Es wird die an einer undurchlässigen, vertikalen Fläche hervorgerufene Grenzschichtströmung im Falle eines Einschalten der Heizung beit=0 betrachtet. Die Stärke der Wandheizung is proportional zux , wobeix die Koordinate längs der Wand ist und eine Konstante. Die Ähnlichkeitsgleichungen werden für den Bereich von großen Zeitent besprochen und es wird gezeigt, daß eine Lösung nur für >–1 vorliegt. Es wird das Verhalten der Lösungen für –1 und erhalten. Numerische Lösungen für die Anfangsbedingungen des Problems werden für eine Reihe von -Werten errechnet. Eine direkte numerische Integration ist für 1 möglich, während für <1 eine Iteration erforderlich ist, wobei das numerische Verhalten für =–0.5 instabil wird.
  相似文献   

8.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

9.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

10.
New asymptotic approaches for dynamical systems containing a power nonlinear term x n are proposed and analyzed. Two natural limiting cases are studied: n 1 + , 1 and n . In the firstcase, the 'small method' (SM)is used and its applicability for dynamical problems with the nonlinearterm sin as well as the usefulness of the SMfor the problem with small denominators are outlined. For n , a new asymptotic approach is proposed(conditionally we call it the 'large method' –LM). Error estimations lead to the followingconclusion: the LM may be used, even for smalln, whereas the SM has a narrow application area. Both of the discussed approaches overlap all values ofthe parameter n.  相似文献   

11.
H. Potente 《Rheologica Acta》1988,27(4):410-417
Zusammenfassung Das Mischen von Stoffen mit unterschiedlichen rheologischen Eigenschaften in Schneckenmaschinen ist in der Kunststoffauf- und -verarbeitung eine Standardaufgabe. Trotzdem gibt es hierfür kein zufriedenstellendes mathematisch-physikalisches Modell. Daher werden zunächst einfache Mischmodelle diskutiert. Auf der Basis dieser Modelle wird dann unter Berücksichtigung der Besonderheiten des Plastifizierextruderprozesses eine Mischgütebeziehung mathematisch formuliert. Die experimentelle Überprüfung erfolgt mit Hilfe der Grauwertanalyse extrudierter Zweistoffsysteme, bei denen ein Stoff mit Ruß eingefärbt war. Da der Mischprozeß hochgradig stochastisch ist, streuen die Meßergebnisse. Unter Berücksichtigung dieses Tatbestandes ist der theoretische Ansatz zufriedenstellend.
Mixing of polymer resins with different rheological properties is a usual demand in plastics processing using screw extruders. A mathematical model describing this processing problem sufficiently is not known, however. Therefore, simple mixing models will be discussed. Based on these, a concept for the calculation of mixing homogeneity will be presented, including the particular requirement of the plasticating screw process. An experimental investigation utilizes the grey-value analysis of extruded two-component materials, which in one phase is carbon-black filled. Considering the fact that the mixing process is highly random, the theoretical model leads to a good level of aggreement with the scattering measurement data.

b Schneckenkanalbreite - B Bandbreite der Grauwerte - c Konstante - mittlere Konzentration, bezogen auf die Grauwertbandbreite - h Höhe, Gangtiefe, Schneckenkanalhöhe - h 0 Gangtiefe der Einzugszone - h 1 Gangtiefe der Ausstoßzone - L Länge - gemittelte Schmelzebettlänge - n Exponent des Potenzfließgesetzes - s Standardabweichung der Grauwerte bezogen auf die Grauwertbandbreite - S Standardabweichung der Grauwerte - t Verweilzeit - t 1 kürzeste Verweilzeit - mittlere Verweilzeit - 0 Umfangsgeschwindigkeit - mittlere Geschwindigkeit - V Volumenstrom - w Dicke eines Kontrollelements - w Ausstreichdicke eines Kontrollelements - x Koordinate - Mittelwert der Grauwerte - y Koordinate - Scherdeformationswinkel - Scherdeformation - mittlere Scherdeformation - Schergeschwindigkeit - Viskosität - 1 dimensionslose kürzeste Verweilzeit - dimensionsloser Volumenstrom - LSM laminarer Schermischgrad - LSM, the theoretischer laminarer Schermischgrad - LSM, exp experimenteller laminarer Schermischgrad - 2 Varianz der Verweilzeit im Schmelzebett - Schubspannung - Gangsteigungswinkel der Schnecke - ø Volumenanteil - dimensionslose Kennzahl  相似文献   

12.
An analysis is presented for laminar source flow between infinite parallel porous disks. The solution is in the form of a perturbation from the creeping flow solution. Expressions for the velocity, pressure, and shear stress are obtained and compared with the results based on the assumption of creeping flow.Nomenclature a half distance between disks - radial coordinate - r dimensionless radial coordinate, /a - axial coordinate - z dimensionless axial coordinate, /a - radial coordinate of a point in the flow - R dimensionless radial coordinate of a point in the flow, /a - velocity component in radial direction - u =a/, dimensionless velocity component in radial direction - velocity component in axial direction - v = a/}, dimensionless velocity component in axial direction - static pressure - p = (a 2/ 2), dimensionless static pressure - =p(r, z)–p(R, z), dimensionless pressure drop - V magnitude of suction or injection velocity - Q volumetric flow rate of the source - Re source Reynolds number, Q/4a - reduced Reynolds number, Re/r 2 - critical Reynolds number - R w wall Reynolds number, Va/ - viscosity - density - =/, kinematic viscosity - shear stress at upper disk - 0 = (a 2/ 2), dimensionless shear stress at upper disk - shear stress ratio, 0/( 0)inertialess - u = , dimensionless average radial velocity - u/u, ratio of radial velocity to average radial velocity - dimensionless stream function  相似文献   

13.
A cylindrical annular liquid layer between two plates and around a rigid center-core consisting of incompressible and viscous liquid is subjected to different axial excitations, such as one-sided, counter-directional and double-sided unequal excitations. The response of the free liquid surface, the velocity- and pressure-distribution has been determined.
Zusammenfassung Eine zylindrische Flüssigkeitsschicht bestehend aus inkompressibler und viskoser Flüssigkeit wurde verschiedenen harmonischen Anregungsformen ausgesetzt. Dabei wurden die Fälle einseitiger, doppelseitiger entgegengesetzter und ungleicher doppelseitiger Anregung mit Phase behandelt. Die Vergrößerungsfunktionen für die freie Flüssigkeitsoberfläche, für die Geschwindigkeits- und Druckverteilung wurden bestimmt.

List of symbols a radius of liquid layer - b radius of inner cylindrical core - (ab) thickness of layer - e r , e , k unit vectors in the radial, angular and axial direction resp. - h length of layer - I m , K m modified Bessel functions of first and second kind and order m - diameter ratio - p pressure - q 2na/h - q* na/h - r, , z cylindrical coordinates - complex frequency - S sa 2/ - t time - u, w velocity components in the radial- and axial direction - 0 excitation amplitude - abbreviation - surface tension parameter - surface tension - dynamic viscosity - kinematic viscosity - density of liquid - free liquid surface elevation - dimensionless time - rz shear stress - reduced forcing frequency - forcing frequency - stream function - mn natural frequency of non-viscous liquid  相似文献   

14.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

15.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

16.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

17.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

18.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

19.
Summary Fluctuating flow of a viscous fluid rotating over a disk whose angular velocity oscillates about a nonzero mean is investigated. Initially the disk and the fluid rotate in the same sense with different angular velocities 1 and 2 ( 2> 1) and at a particular instant of time, the angular velocity of the disk becomes 1[1+ sin( )]. The problem is solved as an initial boundary value problem and it is found that for small values of the results of analytical and numerical methods are in excellent agreement. The effect of frequency parameter on surface skin frictions has been analysed for various values of angular velocity ratio s and amplitude parameter .
Fluktuierende Strömung in einer rotierenden Flüssigkeit
Übersicht Untersucht wird die fluktuierende Strömung einer viskosen Flüssigkeit, die über einer Scheibe, deren Winkelgeschwindigkeit um einen von Null verschiedenen Mittelwert schwankt, rotiert. Anfangs drehen sich die Scheibe und die Flüssigkeit gleichsinnig, aber mit verschiedenen Winkelgeschwindigkeiten 1 und 2 ( 2> 1). Zu einem Anfangszeitpunkt geht die Winkelgeschwindigkeit der Scheibe über in 1[1+ sin ( )]. Die Aufgabe wird als Anfangs-/Randwertproblem gelöst. Für kleine Werte stimmen die analytischen und numerischen Ergebnisse hervorragend überein. Für verschiedene Werte des Winkelgeschwindigkeitsverhältnisses und des Amplitudenparameters wurde der Einfluß des Frequenzparameters auf die Reibspannungen an der Scheibe untersucht.
  相似文献   

20.
Summary This note presents an exact solution for the stress and displacement field in an unbounded and transversely constrained elastic medium resulting from the motion of a plane heat source travelling through the medium at constant speed in the direction normal to the source plane.Nomenclature mass density - diffusivity - thermal conductivity - Q heat emitted by plane heat source per unit time per unit area - speed of propagation of plane heat source - shear modulus - Poisson's ratio - T temperature - x, y, z normal stress components - u x, uy, uz displacement components - c speed of irrotational waves - t time - x, y, z Cartesian coordinates - =x–vt moving coordinate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号