首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 This paper deals with a numerical study of combined convective and radiative heat transfer in a three-dimensional rectangular duct with hydrodynamically and thermally developing laminar flow. The gas is assumed to be an incompressible, absorbing, emitting, isotropically scattering, gray medium. Isothermal, gray, diffuse boundary walls at different temperatures are assumed. The finite-volume method (FVM) is adopted to describe both convective and radiative heat transfer. The coupled continuity and momentum equations are solved by means of SIMPLER algorithm. Numerical results for the radiative flux show very good agreement with the available data. The effects of aspect ratio, optical thickness, scattering albedo and wall emissivity on the mean bulk temperature are also investigated. By splitting the heat flux into convective and radiative contributions, the relative importance of these components is assessed for a typical range of values of the parameters. Received on 9 February 1999  相似文献   

2.
A study is made of plane laminar Couette flow, in which foreign particles are injected through the upper boundary. The effect of the particles on friction and heat transfer is analyzed on the basis of the equations of two-fluid theory. A two-phase boundary layer on a plate has been considered in [1, 2] with the effect of the particles on the gas flow field neglected. A solution has been obtained in [3] for a laminar boundary layer on a plate with allowance for the dynamic and thermal effects of the particles on the gas parameters. There are also solutions for the case of the impulsive motion of a plate in a two-phase medium [4–6], and local rotation of the particles is taken into account in [5, 6]. The simplest model accounting for the effect of the particles on friction and heat transfer for the general case, when the particles are not in equilibrium with the gas at the outer edge of the boundary layer, is Couette flow. This type of flow with particle injection and a fixed surface has been considered in [7] under the assumptions of constant gas viscosity and the simplest drag and heat-transfer law. A solution for an accelerated Couette flow without particle injection and with a wall has been obtained in [6]. In the present paper fairly general assumptions are used to obtain a numerical solution of the problem of two-phase Couette flow with particle injection, and simple formulas useful for estimating the effect of the particles on friction and heat transfer are also obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–46, May–June, 1976.  相似文献   

3.
 A boundary layer analysis has been presented to study the influence of thermal radiation and lateral mass flux on non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Similarity solution for the transformed governing equations is obtained and the combined effect of thermal radiation and fluid suction/injection on the heat transfer rate is discussed. Numerical results for the details of the velocity and temperature profiles as well as Nusselt number have been presented. Received on 7 July 1999  相似文献   

4.
Sub-millimeter-bubble injection is one of the most promising techniques for enhancing heat transfer for the laminar natural convection of liquids. However, flow and heat transfer characteristics for laminar natural convection of water with sub-millimeter bubbles have not yet been fully understood. The purpose of this study is to experimentally clarify the effects of sub-millimeter-bubble injection on the laminar natural convection of water along a heated vertical plate. The use of thermocouples and a particle tracking velocimetry (PTV) technique are applied to temperature and velocity measurements, respectively. The temperature measurement shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection increases with an increase in the bubble flow rate or a decrease in the wall heat flux and that the ratio ranges from 1.35 to 1.85. Moreover, it is concluded from simultaneous measurement of temperature and velocity that the heat transfer enhancement is directly affected by flow modification due to bubbles rising near the heated vertical plate.  相似文献   

5.
In the present investigation, the coupled phenomenon of opposing mixed convection and radiation within differentially heated eccentric horizontal cylindrical annulus has been numerically simulated. The radiation transfer contributed from the participating medium is obtained by solving the nonlinear integro‐differential radiative transfer equation using discrete ordinate method. The participating gray medium is considered to be emitting, absorbing and isotropically scattering. The walls of the annulus are considered to be opaque, diffuse and gray. In the study it has been observed that the Richardson number ‘Ri’ has a small effect on the total Nusselt number ‘Nu’ in mixed convection heat transfer with or without radiation. From the present investigation it is found that substantial changes occur in isotherms as well as in flow patterns, when the Richardson number is allowed to vary in the range of 0.01–1. The influence of radiative parameters on the interaction phenomenon has been delineated through isotherm and streamline pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The paper is devoted to the investigation of hypersonic flow regimes in which radiative transfer plays a significant part. A numerical solution is obtained to the two-dimensional steady problem of hypersonic flow past a flat thermally insulated body of an inviscid radiating gas with allowance for radiative transfer of energy in the approximation of radiative thermal conductivity. It is noted that a heated region is formed around the body, its dimensions exceeding by an order of magnitude those of the body itself; the temperature is effectively equalized, and the gas velocity is close to the velocity of the oncoming flow. Heated gas flows past the body at a moderate Mach number (M ~ 3–6). A thin region of strongly compressed gas is formed directly in front of the body.  相似文献   

7.
Heat transfer analysis has been presented for the boundary layer forced convective flow of an incompressible fluid past a plate embedded in a porous medium. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. In case of porous plate, fluid velocity increases for increasing values of suction parameter whereas due to injection, fluid velocity is noticed to decrease. The non-dimensional temperature increases with the increasing values of injection parameter. A novel result of this investigation is that the flow separation occurred due to suction/injection may be controlled by increasing the permeability parameter of the medium. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

8.
A continuum model for two-phase (fluid/particle) flow induced by natural convection is developed and applied to the problem of steady natural convention flow of a particulate suspension through an infinitely long pipe. The wall of the pipe is maintained at a constant temperature. The particle phase is endowed by an artificial viscosity which may be used to model particle-particle interaction in dension suspensions. Boundary conditions borrowed from rarefied gas dynamics are employed for the particle-phase wall conditions. Closed-form solutions for the velocity and temperature profiles are obtained. For the assumptions employed in the problem, the temperatures of both phases in the pipe are predicted to be uniform. A parametric study of some physical parameters involved in the problem is performed to illustrate the influence of these parameters on the velocity profiles of both the fluid and particle phases.  相似文献   

9.
The motion and heat and mass transfer of particles of a disperse admixture in nonisothermal jets of a gas and a low-temperature plasma are simulated with allowance for the migration mechanism of particle motion actuated by the turbophoresis force and the influence of turbulent fluctuations of the jet flow velocity on heat and mass transfer of the particle. The temperature distribution inside the particle at each time step is found by solving the equation of unsteady heat conduction. The laws of scattering of the admixture and the laws of melting and evaporation of an individual particle are studied, depending on the injection velocity and on the method of particle insertion into the jet flow. The calculated results are compared with data obtained with ignored influence of turbulent fluctuations on the motion and heat and mass transfer of the disperse phase. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 95–108, May–June, 2008.  相似文献   

10.
A theoretical analysis of three-dimensional Couette flow with radiation effect on temperature distribution has been analysed, when the injection of the fluid at the lower stationary plate is a transverse sinusoidal one and its corresponding removal by constant suction through the upper porous plate is in uniform motion. Due to this type of injection velocity, the flow becomes three-dimensional. The effect of Prandtl number, radiation parameter and injection parameter on rate of heat transfer has been examined by the help of graphs. The Prandtl number has a much greater effect on the temperature distribution than the injection or radiation parameter.  相似文献   

11.
Present article examines the three-dimensional flow of upper-convected Maxwell (UCM) fluid over a radiative bi-directional stretching surface. Novel non-linear Rosseland formula for thermal radiation is utilized in the formulation of energy equation. The conventional transformations lead to a strongly non-linear differential system which is treated numerically through Runge–Kutta integration procedure together with the shooting approach. We found that heat transfer rate from the sheet has inverse as well as non-linear relationship with wall to ambient temperature ratio. Moreover an increase in viscoelastic fluid parameter (Deborah number) corresponds to a decrease in the fluid velocity and the boundary layer thickness.  相似文献   

12.
This paper describes flow and heat transfer characteristics of laminar mixed-convection flows of water with sub-millimeter bubbles in a vertical channel. We use thermocouples and a particle tracking velocimetry technique for the temperature and velocity measurements. The working fluid used is tap water, and hydrogen bubbles generated by electrolysis of the water are used as the sub-millimeter bubbles. The Reynolds number of the main flow ranges from 100 to 200. The ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection (the heat transfer coefficient ratio) ranges from 1.24 to 1.38. The heat transfer coefficient ratio decreases with the increase in the Reynolds number. We conclude from velocity measurements that this decrease is mainly caused by a decrease in the advection effect due to sub-millimeter bubbles.  相似文献   

13.
The objective of this part of the paper is to summarize the information concerning the authors' works in the field of simulation of two-phase gas-particle turbulent flows with heat transfer and combustion. A kinetic equation had been derived for the probability density function (PDF) of the particle velocity, temperature, and mass distributions in turbulent flows. This PDF equation is used for the construction of the governing conservation equations of mass, momentum, and heat transfer in the dispersed particle phase.The numerical scheme incorporates two-phase fluid dynamics, convective and radiative heat transfer, and combustion. The proposed models have been applied to the calculation of various particle-laden turbulent flows in jets, combustion and gasification chambers, and furnaces.  相似文献   

14.
Results of an analysis of two-dimensional unsteady exhaustion of a one-velocity gas–particle medium into vacuum for limiting equilibrium cases of heat transfer between the phases are reported. Domains of existence of a one-dimensional Riemann wave and a lateral expansion wave, as well as boundaries of the flow expansion region are determined. Under thermal equilibrium conditions, the reverse flow is found to occupy a large domain extending beyond the boundaries defined by angles of expansion for an ideal gas and for a gas–particle mixture with thermally insulated phases. Exhaustion of a nonequilibrium (in terms of velocities and temperatures) two-phase medium into vacuum is numerically simulated. It is demonstrated that a barrel-shaped structure with wave expansion of the gas and a combined discontinuity in the expanding gas–particle mixture is formed.  相似文献   

15.
A continuum model for two-phase (fluid/particle) flow induced by natural convection is developed and applied to the problem of steady natural convention flow of a particulate suspension through an infinitely long channel. The walls of the channel are maintained at constant but different temperatures. The two-phase model accounts for particle-phase viscous effects. Boundary conditions borrowed from rarefied gas dynamics are employed for the particle-phase wall conditions. Various closed-form solutions for different special cases are obtained. A parametric study of the physical parameters involved in the problem are performed to illustrate the influence of these parameters on the flow and heat transfer aspects of the problem.  相似文献   

16.
The problem of energy transfer in a thermally developing, radiating and conducting medium is studied. In particular, laminar flow of carbon monoxide is considered although the results may be interpreted more generally as referring to any infra red radiating diatomic gas. The effects of radiation and conduction on the temperature profile and the Nusselt number are presented for slug flow and for the parabolic velocity distribution. On leave from the University of California, Berkeley. On leave from the University of Arizona, Tucson.  相似文献   

17.
A numerical simulation of combined natural convection and radiation in a square enclosure heated by a centric circular cylinder and filled with absorbing-emitting medium is presented. The ideal gas law and the discrete ordinates method are used to model the density changes due to temperature differences and the radiation heat transfer correspondingly. The influence of Rayleigh number, optical thickness and temperature difference on flow and temperature fields along with the natural convection, radiation and total Nusselt number at the source surfaces is studied. The results reveal that the radiation heat transfer as well as the optical thickness of the fluid has a distinct effect on the fluid flow phenomena, especially at high Rayleigh number. The heat transfer and so the Nusselt number decreases with increase in optical thickness, while increases greatly with increase in temperature difference. The variation in radiation heat transfer with optical thickness and temperature difference is much more obvious as comparison with convection heat transfer.  相似文献   

18.
The effect of thermal radiation on the non-Darcy mixed convection flow over a non-isothermal horizontal surface immersed in a saturated porous medium has been studied. The wall temperature is assumed to have a power-law variation with the distance measured from the leading edge of the plate. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using a finite-difference scheme. For some particular cases, the self-similar solution has also been obtained. The heat transfer is found to be strongly influenced by the radiative flux number, buoyancy parameter, variation of wall temperature, non-Darcy parameter and the nature of the free stream velocity.  相似文献   

19.
The present paper is concerned with the study of radiation effects on the combined (forced-free) convection flow of an optically dense viscous incompressible fluid over a vertical surface embedded in a fluid saturated porous medium of variable porosity with heat generation or absorption. The effects of radiation heat transfer from a porous wall on convection flow are very important in high temperature processes. The inclusion of radiation effects in the energy equation leads to a highly non-linear partial differential equations which are transformed to a system of ordinary differential equations using non-similarity transformation. These equations are then solved numerically using implicit finite-difference method subject to appropriate boundary and matching conditions. A parametric study of the physical parameters such as the particle diameter-based Reynolds number, the flow based Reynolds number, the Grashof number, the heat generation or absorption co-efficient and radiation parameter is conducted on temperature distribution. The effects of radiation and other physical parameters on the local skin friction and on local Nusselt number are shown graphically. It is interesting to observe that the momentum and thermal boundary layer thickness increases with the radiation and decrease with increase in the Prandtl number.  相似文献   

20.
A boundary layer analysis is presented for a study of the influence of radiation and buoyancy on heat and mass transfer characteristics of continuous surfaces having a prescribed variable surface temperature and stretched with rapidly decreasing power law velocities. The effects of suction in the presence of a quiescent fluid medium of constant temperature are considered. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The transformed governing equations are solved numerically and the velocity and temperature profiles as well as the local Nusselt number and skin friction coefficient are presented. Results show that the effect of radiation is to keep the molten mass away from the slot warmer, reduces the friction factor and increases the heat transfer rate compared to the case with no radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号