首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted pi-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34 a.u.) around approximately 100 fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the pi H-bonded water molecule and then the charge transfer takes place from this water molecule to the sigma H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53 a.u.) around approximately 100 fs.  相似文献   

2.
Thinking about water is inextricably linked to hydrogen bonds, which are highly directional in character and determine the unique structure of water, in particular its tetrahedral H-bond network. Here, we assess if this common connotation also holds for supercritical water. We employ extensive ab initio molecular dynamics simulations to systematically monitor the evolution of the H-bond network mode of water from room temperature, where it is the hallmark of its fluctuating three-dimensional network structure, to supercritical conditions. Our simulations reveal that the oscillation period required for H-bond vibrations to occur exceeds the lifetime of H-bonds in supercritical water by far. Instead, the corresponding low-frequency intermolecular vibrations of water pairs as seen in supercritical water are found to be well represented by isotropic van-der-Waals interactions only. Based on these findings, we conclude that water in its supercritical phase is not a H-bonded fluid.  相似文献   

3.
Fast excited-state relaxation in H-bonded aminopyridine clusters occurs via hydrogen transfer in the excited state. We used femtosecond pump-probe spectroscopy to characterize the excited-state reaction coordinate. Considerable isotope effects for partially deuterated clusters indicate that H-transfer is the rate-limiting step and validate ab initio calculations in the literature. A nonmonotonous dependence on the excitation energy, however, disagrees with the picture of a simple barrier along the reaction coordinate. An aminopyridine dimer serves as a model for Watson-Crick base pairs, where similar reactions have been predicted by theory.  相似文献   

4.
A new computational scheme integrating multi-center ab initio molecular orbitals for determining total energy and normal vibration of large cluster systems is presented. This method can be used to treat large cluster systems such as solvents by quantum mechanics. The geometry parameters, the total energies, the relative energies, and the normal vibrations for four models of water cluster, the hydrated hydronium ion complex, and the transition state of proton transfer are calculated by the present method and are compared with those obtained by the full ab initio MO method. The results agree very well. The scheme proposed in this article is also intended to be used in modeling computer cluster systems using parallel algorithms.  相似文献   

5.
The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C (L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d,p) calculations and DFT (BLYP) calculations with 6-31G(d,p) and 6-31++G(d,p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm(-1). The magnitude of the wavenumber shifts is indicative of relatively strong OH...H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric OH stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.  相似文献   

6.
IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.  相似文献   

7.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

8.
The structures and interaction energies of water clusters with ring stacking motifs are studied by using ab initio calculations. The structures of the water clusters are constructed by stacking either single rings or multi-rings of tetramer, pentamer, and hexamer. We found that, in the single-ring-stacking motif, the most stable isomers exhibit an alternative clockwise-anticlockwise stacking pattern. We also show that four-layer single-ring-stacking isomers are not energetically favorable in comparison with those of two-layer multi-ring-stacking isomers. The relative stability of the isomers is also analyzed in terms of H-bond strength and elastic distortions of the water molecules.  相似文献   

9.
Two electronic structure methods, the fragment molecular orbital (FMO) and systematic molecular fragmentation (SMF) methods, that are based on fragmenting a large molecular system into smaller, more computationally tractable components (fragments), are presented and compared with fully ab initio results for the predicted binding energies of water clusters. It is demonstrated that, even when explicit three-body effects are included (especially necessary for water clusters due to their complex hydrogen-bonded networks) both methods present viable, computationally efficient alternatives to fully ab initio quantum chemistry.  相似文献   

10.
In this work, the dynamical nucleation theory (DNT) model using the ab initio based effective fragment potential (EFP) is implemented for evaluating the evaporation rate constant and molecular properties of molecular clusters. Predicting the nucleation rates of aerosol particles in different chemical environments is a key step toward understanding the dynamics of complex aerosol chemistry. Therefore, molecular scale models of nanoclusters are required to understand the macroscopic nucleation process. On the basis of variational transition state theory, DNT provides an efficient approach to predict nucleation kinetics. While most DNT Monte Carlo simulations use analytic potentials to model critical sized clusters, or use ab initio potentials to model very small clusters, the DNTEFP Monte Carlo method presented here can treat up to critical sized clusters using the effective fragment potential (EFP), a rigorous nonempirical intermolecular model potential based on ab initio electronic structure theory calculations, improvable in a systematic manner. The DNTEFP method is applied to study the evaporation rates, energetics, and structure factors of multicomponent clusters containing water and isoprene. The most probable topology of the transition state characterizing the evaporation of one water molecule from a water hexamer at 243 K is predicted to be a conformer that contains six hydrogen bonds, with a topology that corresponds to two water molecules stacked on top of a quadrangular (H(2)O)(4) cluster. For the water hexamer in the presence of isoprene, an increase in the cluster size and a 3-fold increase in the evaporation rate are predicted relative to the reaction in which one water molecule evaporates from a water hexamer cluster.  相似文献   

11.
Vibrational spectra for the O—H stretching motion of HDO molecules in different surroundings have been calculated by quantum mechanical ab initio methods and compared with experimental spectra. The free water molecule, water chains, and ion–water clusters are discussed. Solvent effects on OH vibrations in liquid water have been calculated as well as “in-crystal” OH frequencies in some ice and ionic crystalline hydrate structures. The importance of nonadditivity effects, electron correlation (at the mp 2 level), and long-range interactions for the total frequency downshift is demonstrated. It is shown that the inclusion of these effects, in conjunction with a variational quantum mechanical treatment of the anharmonic vibrational stretching motion (force constants up to the fourth order), yields vibrational frequencies in quantitative agreement with experiment for a wide range of aqueous systems.  相似文献   

12.
The polarizability of a water molecule in liquid is evaluated via ab initio and density functional calculations for water clusters. This work has considerably improved our previous effort [J Chem Phys 1999, 110, 11987] to attain quantitative accuracy for polarizability. The calculations revealed that the water polarizability in the liquid is reduced from that in the gaseous phase by 7-9%. These results suggest significant implications for polarizable water models.  相似文献   

13.
14.
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.  相似文献   

15.
We are reporting ab initio and density functional theory (DFT) calculations for the phenol O–H bond dissociation energy in the gas phase and in phenol–water clusters. We have tested a series of recently proposed functionals and verified that DFT systematically underestimates the O–H bond dissociation energy of phenol. However, O–H bond dissociation energies in water clusters are in reasonable agreement with experimental data for phenol in solution. We have evaluated electronic difference densities in phenol–water, phenoxy–water, and water, and we are suggesting that the representation of this quantity gives an interesting picture of the electronic density rearrangement induced by hydrogen bond interactions in phenol–water clusters. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

16.
A new water potential, DMIP (distributed multipoles, implicit polarization), is constructed using distributed multipoles to describe the electrostatic interactions, while accounting for polarization implicitly. In this procedure, small clusters are randomly sampled from atomistic simulations of bulk water using the AMOEBA (Ren and Ponder, J Comput Chem 2002, 23, 1497) potential. The multipole moments of the central water in each cluster are obtained from ab initio densities for each cluster, and the moments are then averaged over all clusters. Properties of bulk water calculated using DMIP compare favorably with existing data from AMOEBA simulations and experiment, with a conservative estimate of reduction in compute time of roughly 40%. The implicit force-field is also shown to work compatibly with existing polarizable multipole-based force-fields for biomolecules.  相似文献   

17.
The structure of liquid formic acid has been investigated by Car-Parrinello and classical molecular dynamics simulations, focusing on the characterization of the H-bond network and on the mutual arrangement of pairs of bonded molecules. In agreement with previous computational studies, two levels of H-bonded structures have been found. Small clusters, characterized by O-H...O bonds, are held together by weak C-H...O bonds to form large branched structures. From the ab initio simulation we infer the importance of cyclic H-bond dimer configurations, typical of the gas phase. Most of these dimer structures are however found to be embedded into H-bonded chains. When only O-H...O bonds are taken into account, linear H-bond chains are detected as basic structures of the liquid. More branched structures occur when C-H...O bonds are also considered. Regarding the arrangement of molecular pairs, we observed that O-H...O bonds favor the occurrence of configurations with parallel molecular planes, whereas no preferential orientation is observed for molecules forming C-H...O bonds.  相似文献   

18.
We have simulated exchange of inner-sphere and bulk water molecules for different sizes of Al3+(aq) clusters, Al(H2O)63+ + nH2O for n = 0, 1, 6, or 12, with ab initio and molecular dynamics simulations, in order to understand how robust the ab initio method is for identifying hydrolytic reaction pathways of particular importance to geochemistry. In contrast to many interfacial reactions, this particular elementary reaction is particularly simple and well-constrained by experiment. Nevertheless, we find that a rich array of parallel reaction pathways depend sensitively on the details of the solvation sphere and structure and that larger clusters are not necessarily better. Inner-sphere water exchange in Al3+(aq) may occur through two Langford-Gray dissociative pathways, one in which the incoming and outgoing waters are cis, the other in which they are trans to one another. A large majority of exchanges in the molecular dynamics simulations occurred via the trans mechanism, in contrast to the predictions of the ab initio method. In Al(H2O)63+ + H2O, the cis mechanism has a transition state of 84.3 kJ/mol, which is in good agreement with previous experimental and ab initio results, while the trans mechanism has only a saddle point with two negative frequencies, not a transition state, at 89.7 kJ/mol. In addition to the exchange mechanisms, dissociation pathways could be identified that were considerably lower in energy than experiment and varied considerably between 60 and 100 kJ/mol, depending on the particular geometry and cluster size, with no clear relation between the two. Ab initio calculations using large clusters with full second coordination spheres (n = 12) were unable to find dissociation or exchange transition states because the network of hydrogen bonds in the second coordination sphere was too rigid to accommodate the outgoing inner-sphere water. Our results indicate that caution should surround ab initio simulation of complicated dynamic processes such as hydrolysis, ion exchange, and interfacial reactions that involve several steps. Dynamic methods of simulation need to accompany static methods such as ab initio calculation, and it is best to consider simulated pathways as hypotheses to be tested experimentally rather than definitive properties of the reaction.  相似文献   

19.
The interaction between formic acid (FA) and water was systemically investigated by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEMσπ/MM) and ab initio methods. The geometries of 20 formic acid–water complexes (FA–water) were obtained using B3LYP/aug-cc-pVTZ level optimizations, and the energies were determined at the MP2/aug-cc-pVTZ level with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) corrections. The ABEEMσπ potential model gives reasonable properties of these clusters when compared with the present ab initio data. For interaction energies, the root mean square deviation is 0.74 kcal/mol, and the linear coefficient reaches 0.993. Next, FA in aqueous solution was also studied. The hydrogen-bonding pattern due to the interactions with water has been analyzed in detail. Furthermore, the ABEEMσπ charges changed when H2O interacted with the FA molecule, especially at the sites where the hydrogen bonds form. These results show that the ABEEMσπ fluctuating charge model is fine giving the overall characteristic hydration properties of FA–water systems in good agreement with the high-level ab initio calculations.  相似文献   

20.
The structure and energy of formation of the hydrogen bonded complex HFHCN are predicted by ab initio molecular orbital methods. The charge redistribution upon dimer formation is examined in this complex and related to those charge distributions found in other H-bonded complexes. The total hydrogen bond energy is broken down into components as well as related to experimental work on similar compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号