首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report on the reduction of aqueous chloroaurate ions by glucose to form gold nanoparticles of uniform size. We further demonstrate the complexation of these particles with octadecylamine (ODA) monolayers at the air-water interface. Pressure-area (pi-A) isotherms as a function of time of complexation revealed a significant expansion of the monolayer. Surface pressure variation with time for constant areas after spreading of the monolayer was carried out to observe the kinetics of complexation of the colloidal particles at the interface. The kinetics of complexation of the particles at the interface was also monitored by Brewster angle microscopy (BAM) measurements. Langmuir-Blodgett films of the particles complexed with ODA were formed at a subphase pH of 9 onto different substrates. Quartz crystal microgravimetry (QCM) was used to quantify the amount of particles deposited per immersion cycle of the quartz crystal. The LB films were further characterized by UV-vis and transmission electron microscopy (TEM) measurements. TEM measurements indicate a close packed and equidistant arrangement of colloidal particles in the LB film, probably due to hydrogen-bonding interactions.  相似文献   

2.
利用LB(Langmuir-Blodgett)技术, 采用循环压缩的方法在不同基底表面上制备FePt纳米粒子单层膜, 采用TEM和AFM等技术手段对其表面形貌进行表征. 研究结果表明, 采用循环压缩的方法可以大大提高单层膜的均匀性和致密性, 并且在不同的基底表面其成膜性能具有较大的差异.  相似文献   

3.
Regioselectively substituted alkylcellulose ethers having long alkyl side chains, 6-O- (6C18), 2,3-di-O- (23C18), and tri-O-octadecyl-cellulose (triC18) were successfully synthesized. The key step of these syntheses was removal of the residual alkylation reagent by an isothermal crystallization procedure to isolate and purify the compounds, since a physical entanglement between the long alkyl side chains in the cellulose derivatives and the reagent had caused difficulty in obtaining the purified derivatives. After the monolayers from these cellulose ethers were fabricated on a water surface, they were deposited on substrates by a vertical dipping method to be Langmuir-Blodgett (LB) monolayers. During the compression process of each monolayer, a surface pressure (pi)-area (A) isotherm behaved in a different way. Atomic force microscopy (AFM) was employed to interpret changes of the surface topography of the obtained LB monolayers depending on the surface pressure. The compressed 23C18 LB monolayer was observed to be more homogeneous than other samples. On the basis of the LB monolayer thickness estimated by AFM as well as X-ray reflection measurements, the 23C18 LB monolayer was assumed to possibly possess the vertical arrangement of an up-ordering of all the alkyl side chains on the individual glucose ring against the water surface. In other words, with increase in the surface pressure, the usual conformation of a 2(1) screw of cellulose backbone may be changed into an unusual conformation with a certain phi-psi dihedral angle resulting in 1-fold axis without a symmetry element. These results suggest that the formation of such compressed LB monolayers was strongly influenced by the hydrophobic interaction among the distribution of the long alkyl side chains in the anhydroglucose unit and further lack of inter- and/or intramolecular hydrogen bonds engaged in cellulose ethers, and as a result, those effects may even change the main chain conformation.  相似文献   

4.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

5.
The advantage of "self-assembly" (strong covalent binding to substrates) was combined with the advantage of Langmuir-Blodgett (LB) or Langmuir-Schaefer (LS) transfer to a solid substrate (quantitative transfer of monolayers to the substrate). The electrical rectification (asymmetric conduction) by a monolayer of thioacetylalkylquinolinium tricyanoquinodimethanide was critically compared when these molecules had been transferred, by such competing techniques, onto gold electrodes, and then covered by a "cold gold" pad electrode. Unimolecular rectification was observed in the expected directions in the LB and LS monolayers. The Self-Assembled Monolayers (SAMs) were disordered; macroscopic measurements of rectification were unsuccessful for the SAMs, but successful for the down-stroke LB and LS monolayers, whose orientation and potential bonding to the Au surface should be identical to that of an ideal SAM.  相似文献   

6.
The effect the solvent and transfer pressure of graphene oxide (SLGO) Langmuir–Blodgett films on the physicochemical properties of monolayers, and on their structural and optical properties, is studied. Examination of the physicochemical properties of SLGO monolayers on subphase surfaces that are formed from SLGO dispersions in different organic solvents reveals that monolayer behavior is virtually independent of the solvent. Electron microscope and optical studies show that the monolayers formed from SLGO dispersions in DMF and acetone have the highest transfer coefficients. It is concluded that the structural heterogeneity of the surfaces of graphene oxide films results from simultaneous effect of electrostatic interactions between graphene oxide particles and Van der Waals interactions with the solvation shell of the particles. Studies focusing on the effect the pressure of transferring a graphene oxide monolayer onto the surface of a solid substrate has on structural features of LB films show that films produced at low surface pressures have more homogeneous structures.  相似文献   

7.
We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir–Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell–cell adhesion became stronger than cell–substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24 h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm−2, some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and the response was dependent on the pitch of particle monolayers.  相似文献   

8.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

9.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

10.
Amphiphilic phthalocyanines with one crown ether and three alkyl chain substitutions can form stable monolayers on a water surface. This monolayer can be transferred to a substrate by a vertical dipping method. The arrangement of phthalocyanine molecules in LB films was affected by the length of alkyl chains and the coordination of alkali ions in crown ether. Davydov splitting was observed in the absorption spectra of the LB films of phthalocyanine with the shortest alkyl chain substitutions, and this splitting was affected by the alkali ions in the subphase.  相似文献   

11.
A novel method coupling the Langmuir-Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surface energy, respectively. By controlling the hydrophobic-hydrophilic balance of the silica particle surface through the adsorption of surfactant molecules, deposition of monolayers consisting of hexagonally close-packed arrays of particles on a glass substrate can then be successfully conducted in a Langmuir trough. LB particulate films with a particle layer number up to 5 were thereby prepared. A sintered and hydrophobically finished particulate film with roughness factor of 1.9 was finally fabricated by sintering and surface silanization. Effects of particle size and particle layer number on the wetting behavior of the particulate films were systematically studied by measuring static and dynamic water contact angles. The experimental results revealed that a static contact angle of about 130 degrees resulted from the particulate films regardless of the particle size and particle layer number. This is consistent with the predictions of both the Wenzel model and the Cassie and Baxter model in that roughness of a hydrophobic surface can increase its hydrophobicity and a switching of the dominant mode from Wenzel's to Cassie and Baxter's. In general, an advancing contact angle of about 150 degrees , a receding contact angle of about 110 degrees , and a contact angle hysteresis of about 40 degrees were exhibited by the particulate films fabricated.  相似文献   

12.
The behavior of the monolayers of three diphilic aminomethylated calix[4]resorcinarene (CRA) derivatives on the surface of a pure aqueous subphase and subphase containing copper(II), nickel(II), europium(III), terbium(III), and lanthanum(III) ions was investigated. The monolayer transfer to the quartz and single-crystal silicon substrates was accomplished by the Langmuir-Blodgett (LB) technique. The films were studied by ellipsometry and mass-spectrometry. Metal ions were found to exert effect on the limit area per one CRA molecule in the monolayer, on the surface collapse pressure and transfer coefficient of monolayer, and on the thickness and refractive index of the CRA-based LB films.  相似文献   

13.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

14.
The sterically guided molecular recognition of nucleobases, phosphates, adenosine, and uridine nucleotides on Langmuir monolayers and Langmuir-Blodgett monolayers of amphiphilic mono- or bis(Zn2+-cyclen)s assembled on thiolated surfaces was investigated. The stepwise selective binding of metal ions, uracil, or phosphate by dicetyl cyclen monolayers with variously tuned structures at the air/water interface was corroborated by the measurements of the corresponding LB films deposited onto quartz crystals. Two types of recognition surfaces were fabricated from Zn2+-dicetyl cyclen. The surface covered with a complex preformed in the Langmuir monolayer was capable both of imide and of phosphate binding. The similar complex formed directly in an LB film on thiolated gold was inactive with respect to imide. The surface plasmon resonance measurements evidenced the stepwise assembly of complementary nucleotides on SAM/LB templates through consecutive phosphate-Zn2+-cyclen coordination. Base pairing between nucleotides resulted in a formation of A-U bilayers comprising two complementary monolayers. Finally, we report on SAM/LB patterns designed for divalent molecular recognition of uridine phosphate by amphiphilic bis(Zn2+-cyclen).  相似文献   

15.
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer.  相似文献   

16.
The behavior of monolayers of monodisperse prolate ellipsoidal latex particles with the same surface chemistry but varying aspect ratio has been studied experimentally. Particle monolayers at an air-water interface were subjected to compression in a Langmuir trough. When surface pressure measurements and microscopy observations were combined, possible structural transitions were evaluated. Ellipsoids of a sufficiently large aspect ratio display a less abrupt increase in the compression isotherms than spherical particles. Microscopic observations reveal that a sequence of transitions is responsible for this more gradual increase of the surface pressure. When a percolating aggregate network is used as the starting point, locally ordered regions appear progressively. When it reaches a certain surface pressure, the system "jams", and in-plane rearrangements are no longer possible at this point. A highly localized yielding of the particle network is observed. The compressional stress is relieved by flipping the ellipsoids into an upright position and by expelling particles from the monolayer. The latter does not occur for spherical particles with similar dimensions and surface chemistry. In the final stage of compression, buckling of the monolayer as a whole was observed. The effect of aspect ratio on the pressure area isotherms and on the obtained percolation and packing thresholds was quantified.  相似文献   

17.
Molecular recognition of mixed nucleolipids of 1-(2-octadecyloxycarbonylethyl)cytosine and 7-(2-octadecyloxycarbonylethyl)guanine in the monolayers at the air-water interface and Langmuir-Blodgett (LB) films has been investigated in detail using surface pressure/potential-area isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Fourier transform infrared (FTIR) transmission spectroscopy, respectively. Prior to molecular recognition, the cytosine moieties in the monolayer were hydrogen bonded with an almost flat-on orientation, the alkyl chains were uniaxially oriented with respect to the film normal, the guanine moieties in the monolayer were stacked probably through pi-pi interaction with an end-on orientation, and the C-C-C planes of the alkyl chains were preferentially oriented parallel to the water surface. In the monolayer of equimolar mixture, molecular recognition between the cytosine and guanine moieties occurred together with the ring planes of base pairing and the C-C-C planes of the alkyl chains favorably oriented parallel to the water surface. The guanine moieties underwent an orientation change from an end-on mode before molecular recognition to a flat-on one after molecular recognition. The base pairing between the cytosine and guanine moieties in the monolayers was achieved since the N7-substituted guanine derivatives suppressed the formation of guanine tetramers. Both the IRRAS spectra of the monolayers and the FTIR spectra of the LB films presented the exact sites in the cytosine and guanine moieties for the formation of triple hydrogen bonds. The base pairing resulted in a change in molecular orientation and interaction, and the corresponding LB film exhibited a different phase transition behavior from a typical crystal transition for the cytosine-functionalized nucleolipids and an analogous glass transition for the guanine-functionalized nucleolipids. The thermal stability of the mixed LB film was improved in comparison to the LB films of pure components.  相似文献   

18.
The 3‐ferrocenoylpropanoyl group, one of the redox species, was introduced at C‐2 and/or C‐3 positions of 6‐O‐(4‐stearyloxytrityl)cellulose. The spreading behavior of the cellulose derivatives on the water surface and the properties of Langmuir–Blodgett (LB) films were investigated. The surface pressure–area isotherm of the cellulose monolayer was changed by the subphase temperature. Uniform monolayers of 6‐O‐(4‐stearyloxytrityl)cellulose 3‐ferrocene propionate (STCFc) could be deposited successively onto several substrates by the horizontal lifting method at 10 mN m?1, and this produced X‐type LB films. The successive uniform depositions of STCFc were confirmed by ultraviolet–visible absorption spectra. X‐ray diffraction measurements indicated that the thickness of the STCFc molecules in the LB films was 1.99 nm. Fourier transform infrared spectroscopy measurements supported the idea that hydrocarbon chains in the LB films were highly ordered (trans‐zigzag) and oriented considerably perpendicular to the surface of the substrate. Moreover, the C?O group of the ferrocenoyl groups was perpendicular to the surface of the substrate, and the ferrocene group was occupied in the water phase. Cyclic voltammograms for the STCFc monolayer on a gold electrode exhibited surface waves. The interfacial electron‐transfer process between the redox site incorporated into the cellulose LB monolayer and the electrode surface was fast enough at a scanning rate lower than 100 mV s?1. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5023–5031, 2005  相似文献   

19.
A hybrid Langmuir-Blodgett (LB) membrane of dialkyldimethylammonium (DCnA, n=12?18) and vanadium oxide gel was fabricated by compressing a DC n A monolayer on an aqueous vanadium oxide solution. The vanadium oxide gel effectively aggregated in situ as a monolayer on the LB trough and stabilized the ammonium monolayer by electrostatic interaction. The hybrid LB monolayer, transferred onto a silicon wafer, had a smooth surface, with less than 1-nm roughness over a 1 μm × 1 μm square area. Multilayered membranes, prepared by repeated transfer of monolayers, showed sharp XRD patterns, assigned as an ordered bilayer-type structure with 2.9–4.8 nm thickness.  相似文献   

20.
Stable, insoluble Langmuir monolayer films composed of Staphylococcus aureus-specific lytic bacteriophage were formed at an air–water interface and characterized. The phage monolayer was very strong, withstanding a surface pressure of ~40 mN/m at 20 °C. The surface pressure–area (ΠA) isotherm possessed a shoulder at ~7 × 104 nm2/phage particle, attributed to a change in phage orientation at the air–water interface from horizontal to vertical capsid-down/tail-up orientation as surface pressure was increased. The ΠA-dependence was accurately described using the Volmer equation of state, assuming horizontal orientation to an air–water interface at low surface pressures with an excluded area per phage particle of 4.6 × 104 nm2. At high pressures phage particles followed the space-filling densely packed disks model with a specific area of 8.5 × 103 nm2/phage particle. Lytic phage monolayers were transferred onto gold-coated silica substrates from the air–water interface at a constant surface pressure of 18 mN/m by Langmuir–Blodgett method, then dried and analyzed by scanning electron microscopy (SEM) and ellipsometry. Phage specific adsorption (Γ) in Langmuir–Blodgett (LB) films measured by SEM was consistent with that calculated independently from Π–A isotherms at the transfer surface pressure of 18 mN/m (Γ = 23 phage particles/μm2). The 50 nm-thickness of phage monolayer measured by ellipsometer agreed well with the horizontal phage average size estimated by SEM. Surface properties of phage Langmuir monolayer compare well with other monolayers formed from nano- and micro-particles at the air–water interface and similar to that of classic amphiphiles 1,2-diphytanoyl-sn-glycero-3-phosphocholine (phospholipid) and stearic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号