首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a linear system of thermoelasticity in a compact, C infin, n-dimensional connected Riemannian manifold. This system consists of a wave equation coupled to a heat equation. When the boundary of the manifold is non‐empty, Dirichlet boundary conditions are considered. We study the controllability properties of this system when the control acts in the hyperbolic equation (and not in the parabolic one) and has its support restricted to an open subset of the manifold. We show that, if the control time and the support of the control satisfy the geometric control condition for the wave equation, this system of thermoelasticity is null-controllable. More precisely, any finite‐energy solution can be driven to zero at the control time. An analogous result is proved when the control acts on the parabolic equation. Finally, when the manifold has no boundary, the null‐controllability of the linear system of three‐dimensional thermoelastic ity is proved. (Accepted June 13, 1996)  相似文献   

2.
This paper is concerned with the asymptotic stability towards a rarefaction wave of the solution to an outflow problem for the Navier–Stokes equations in a compressible fluid in the Eulerian coordinate in the half space. This is the second one of our series of papers on this subject. In this paper, firstly we classify completely the time-asymptotic states, according to some parameters, that is the spatial-asymptotic states and boundary conditions, for this initial boundary value problem, and some pictures for the classification of time-asymptotic states are drawn in the state space. In order to prove the stability of the rarefaction wave, we use the solution to Burgers’ equation to construct a suitably smooth approximation of the rarefaction wave and establish some time-decay estimates in L p -norm for the smoothed rarefaction wave. We then employ the L 2-energy method to prove that the rarefaction wave is non-linearly stable under a small perturbation, as time goes to infinity. P. Zhu was supported by JSPS postdoctoral fellowship under P99217.  相似文献   

3.
In this paper, we study the stability of n-dimensional linear fractional differential equation with time delays, where the delay matrix is defined in (R +)n×n. By using the Laplace transform, we introduce a characteristic equation for the above system with multiple time delays. We discover that if all roots of the characteristic equation have negative parts, then the equilibrium of the above linear system with fractional order is Lyapunov globally asymptotical stable if the equilibrium exist that is almost the same as that of classical differential equations. As its an application, we apply our theorem to the delayed system in one spatial dimension studied by Chen and Moore [Nonlinear Dynamics 29, 2002, 191] and determine the asymptotically stable region of the system. We also deal with synchronization between the coupled Duffing oscillators with time delays by the linear feedback control method and the aid of our theorem, where the domain of the control-synchronization parameters is determined.  相似文献   

4.
We establish here the global existence and uniqueness of admissible (both dissipative and conservative) weak solutions to a canonical asymptotic equation () for weakly nonlinear solutions of a class of nonlinear variational wave equations with any L 2(ℝ) initial datum. We use the method of Young measures and mollification techniques. Accepted April 25, 2000?Published online November 16, 2000  相似文献   

5.
A higher-order approximation theory of internal solitary waves with a free surface is presented. Using the method of strained co-ordinates, the third-order approximation evolution equation of interface has been found. An analytic expression of the wave velocity is given. The evolution equation has been solved numerically. It is found that the effects of free surface on the shape and wave velocity of solitary wave are O(ε2), and the third-order numerical solutions are closer to experimental data than the first-and second-order solutions.  相似文献   

6.
 The Navier-Stokes equation for compressible viscous fluid is considered on the half space in R 3 under the zero-Dirichlet boundary condition for the momentum with initial data near an arbitrarily given equilibrium of positive constant density and zero momentum. Time decay properties in L 2 norms for solutions of the linearized problem are investigated to obtain the rate of convergence in L 2 norms of solutions to the equilibrium when initial data are sufficiently close to the equilibrium in . Some lower bounds are derived for solutions to the linearized problem, one of which indicates a nonlinear phenomenon not appearing in the case of the Cauchy problem on the whole space. (Accepted May 8, 2002) Published online October 18, 2002 Communicated by T.-P. LIU  相似文献   

7.
Asymptotic Variational Wave Equations   总被引:1,自引:0,他引:1  
We investigate the equation (u t +(f(u)) x ) x =f ′ ′(u) (u x )2/2 where f(u) is a given smooth function. Typically f(u)=u 2/2 or u 3/3. This equation models unidirectional and weakly nonlinear waves for the variational wave equation u tt c(u) (c(u)u x ) x =0 which models some liquid crystals with a natural sinusoidal c. The equation itself is also the Euler–Lagrange equation of a variational problem. Two natural classes of solutions can be associated with this equation. A conservative solution will preserve its energy in time, while a dissipative weak solution loses energy at the time when singularities appear. Conservative solutions are globally defined, forward and backward in time, and preserve interesting geometric features, such as the Hamiltonian structure. On the other hand, dissipative solutions appear to be more natural from the physical point of view.We establish the well-posedness of the Cauchy problem within the class of conservative solutions, for initial data having finite energy and assuming that the flux function f has a Lipschitz continuous second-order derivative. In the case where f is convex, the Cauchy problem is well posed also within the class of dissipative solutions. However, when f is not convex, we show that the dissipative solutions do not depend continuously on the initial data.  相似文献   

8.
 The paper considers the stability and strong convergence to equilibrium of solutions to the spatially homogeneous Boltzmann equation for Fermi-Dirac particles. Under a cutoff condition on the collision kernel, we prove a strong stability in L 1 topology at any finite time interval, and, for hard and Maxwellian potentials, we prove that the solutions converge strongly in L 1 to equilibrium under a high temperature condition. The basic tools used are moment-production estimates and the strong compactness of the collision gain term. (Accepted 25, October 2002) Published online March 14, 2003 Communicated by P.-L. Lions  相似文献   

9.
We consider scalar nonviscous conservation laws with strictly convex flux in one spatial dimension, and we investigate the behavior of bounded L 2 perturbations of shock wave solutions to the Riemann problem using the relative entropy method. We show that up to a time-dependent translation of the shock, the L 2 norm of a perturbed solution relative to the shock wave is bounded above by the L 2 norm of the initial perturbation.  相似文献   

10.
We present three a priori L 2-stability estimates for classical solutions to the Boltzmann equation with a cut-off inverse power law potential, when initial datum is a perturbation of a global Maxwellian. We show that L 2-stability estimates of classical solutions depend on Strichartz type estimates of perturbations and the non-positive definiteness of the linearized collision operator. Several well known classical solutions to the Boltzmann equation fit our L 2-stability framework.  相似文献   

11.
  We study the multiscale problem of a parametrized planar 180° rotation of magnetization states in a thin ferromagnetic film. In an appropriate scaling and when the film thickness is comparable to the Bloch line width, the underlying variational principle has the form
where the reduced stray-field operator 𝒮 Q approximates (−Δ)1/2 as the quality factor Q tends to zero. We show that the associated Néel wall profile u exhibits a very long logarithmic tail. The proof relies on limiting elliptic regularity methods on the basis of the associated Euler-Lagrange equation and symmetrization arguments on the basis of the variational principle. Finally we study the renormalized limit behavior as Q tends to zero. (Accepted October 29, 2002) Published online March 6, 2003 Communicated by F. Otto  相似文献   

12.
We prove the existence of planar travelling wave solutions in a reaction-diffusion-convection equation with combustion nonlinearity and self-adjoint linear part in R n, n1. The linear part involves diffusion-convection terms and periodic coefficients. These travelling waves have wrinkled flame fronts propagating with constant effective speeds in periodic inhomogeneous media. We use the method of continuation, spectral theory, and the maximum principle. Uniqueness and monotonicity properties of solutions follow from a previous paper. These properties are essential to overcoming the lack of compactness and the degeneracy in the problem.  相似文献   

13.
This paper is concerned with the time periodic solutions to the one-dimensional nonlinear wave equation with either variable or constant coefficients. By adjusting the basis of L 2 function space, we can circumvent the difficulties caused by η u  = 0 and obtain the existence of a weak periodic solution, which was posed as an open problem by Baubu and Pavel in (Trans Am Math Soc 349:2035–2048, 1997). Finally, an application to the forced Sine-Gordon equation is presented to illustrate the utility of this technique.  相似文献   

14.
We prove existence, uniqueness and stability for solutions of the nonlinear Boltzmann equation in a periodic box in the case when the initial data are sufficiently close to a spatially homogeneous function. The results are given for a range of spaces, including L 1, and extend previous results in L for the non-homogeneous equation, as well as the more developed L p -theory for the spatially homogeneous Boltzmann equation.We also give new L -estimates for the spatially homogeneous equation in the case of Maxwellian interactions.  相似文献   

15.
We estimate the time decay rates in L 1, in the Hardy space and in L of the gradient of solutions for the Stokes equations on the half spaces. For the estimates in the Hardy space we adopt the ideas in [7], and also use the heat kernel and the solution formula for the Stokes equations. We also estimate the temporal-spatial asymptotic estimates in L q , 1 < q < ∞, for the Stokes solutions. This work was supported by grant No. (R05-2002-000-00002-0(2002)) from the Basic Research Program of the Korea Science & Engineering Foundation.  相似文献   

16.
  We consider the semidiscrete upwind scheme
We prove that if the initial data ū of (1) has small total variation, then the solution u ɛ (t) has uniformly bounded BV norm, independent of t, ɛ. Moreover by studying the equation for a perturbation of (1) we prove the Lipschitz-continuous dependence of u ɛ (t) on the initial data. Using a technique similar to the vanishing-viscosity case, we show that as ɛ→0 the solution u ɛ (t) converges to a weak solution of the corresponding hyperbolic system,
Moreover this weak solution coincides with the trajectory of a Riemann semigroup, which is uniquely determined by the extension of Liu's Riemann solver to general hyperbolic systems. (Accepted September 18, 2002) Published online January 23, 2003 Communicated by A. Bressan  相似文献   

17.
This article is devoted to the study of the propagations of the nonlinear water waves on the shear flows. Assuming μ=kh is small andε/μ 2O(1), and the base flow is uniformly sheared, the modified Boussinesq equation is obtained. We calculate propagations of the single solitary wave with vorticity Γ=0,>0 and <0. The influences of the vorticity are manifested. At the end examples of the interactions of two solitary waves, moving in opposite and the same directions, are given. Besides the phase shift, there also occur second wavelets after head-on collision. The project supported by the National Natural Science Foundation of China  相似文献   

18.
Neck propagation in the stretching of elastic solid filaments having a yield point was analyzed using the space one-dimensional thin filament governing equations developed previously by the authors and other researchers. Constitutive model for the filament was assumed to be expressible as engineering tensile stress(X) (tensile force) given as a function of elongational strain with the(X) curve having a yield point maxima followed by a minima and a breaking point greater than the yield point maxima. Also incorporated into the model is the hysteresis of irreversible plastic deformation. When inertia is taken into consideration, the thin filament equations were found to reduce to the nonlinear wave equation 2 (X)/ 2 =C 1 2 X/ 2 where is Lagrangean space coordinate, is time, andC 1 is inertia coefficient. The above nonlinear wave equation yields a solutionX(, ) having a stepwise discontinuity inX which propagates along the axis. The zero speed limit of the step wave solution was found to describe the above neck propagation occurring in solid filaments. Furthermore, it was recognized that the nonlinear wave equation was known for many years to also govern the plastic shock wave which propagates axially within a metal rod subjected to a very strong impact on its end. The one-dimensional atmospheric shock wave also was known to be governed by the nonlinear wave equation upon making certain simplifying assumptions. The above and other evidences lead to the conclusion that neck propagation occurring in the extension of solid filament obeying the above(X) function can be formally described as a shock wave.  相似文献   

19.
We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation u tt c(u)(c(u)u x ) x  = 0. We allow for initial data u| t = 0 and u t | t=0 that contain measures. We assume that 0 < k-1 \leqq c(u) \leqq k{0 < \kappa^{-1} \leqq c(u) \leqq \kappa}. Solutions of this equation may experience concentration of the energy density (ut2+c(u)2ux2)dx{(u_t^2+c(u)^2u_x^2){\rm d}x} into sets of measure zero. The solution is constructed by introducing new variables related to the characteristics, whereby singularities in the energy density become manageable. Furthermore, we prove that the energy may focus only on a set of times of zero measure or at points where c′(u) vanishes. A new numerical method for constructing conservative solutions is provided and illustrated with examples.  相似文献   

20.
We show the existence of weak solutions to the partial differential equation which describes the motion by R-curvature in R d , by the continuum limit of a class of infinite particle systems. We also show that weak solutions of the partial differential equation are viscosity solutions and give the uniqueness result on both weak and viscosity solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号