首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A cobalt-selective solid-contact electrode was prepared on the basis of titanium ditelluride. The electrode exhibits the slope of the electrode function –(29 ± 1) mV/pC and provides the determination of 1 × 10–5–1 × 10–1 M cobalt(II) in the pH range 4.5–6.5. The electrode was used for the potentiometric indication of the titration end point in the determination of cobalt(II) in lanthanum–strontium cobaltite La0.5Sr0.5CoO3. The intercalant concentration range providing optimal ion-selective properties was determined.  相似文献   

2.
A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0×10–5–1.0×10–1 M and 6.0×10–6–1.0×10–1 M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0×10–6 and 6.0×10–6 M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10–50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4–7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.  相似文献   

3.
Tetraazacyclotetradecane, tetratosyltetraaza 12C4, and tritosyltriaza 9C3 have been explored as electroactive materials for preparing coated wire ion-selective electrodes (CWISEs) for Cr(III) ions. The best performance was observed for the membrane comprising electroactive material (tetratosyltetraaza 12C4), plasticizer (dibutyl phthalate), and poly(vinyl chloride) in the optimum ratio 5:60:35 (w/w). Linear Nernstian response for this electrode was obtained over the total Cr(III) concentration range of 1×10–1 to 1×10–7 M in 0.05 M NH4NO3 medium, with a slope of 20±1 mV per decade change. The working pH range of the electrode was 1.8–5.5. Selectivity coefficients of some mono, divalent, and trivalent metal ions were determined. Analyses of electroplating bath solutions, chromating, and effluent samples have been carried out using this CWISE and the results are found to be comparable with those obtained by using conventional methods or by AAS.  相似文献   

4.
Mixed ion-pairs based on the use of ephedrinium (EPH)-TPB plus EPH-reineckate (II) and phenylephrine-TPB plus EPH-reineckate (III) were tried for use in plastic membranes. The results were compared to those of an EPH-reineckate (I) single ion-pair electrode. The Nernstian slopes were 50, 49 and 55 mV decade–1 for membranes I, II and III, respectively. The linear concentration ranges were 10–5–10–1, 4.0 × 10–5–10–1 and 6.3 ×–5–10–1 M ephedrine. The detection limits were 4 ×–6,10–5 and 1.2 × 10–5 M ephedrine for membranes I, II and III, respectively. The pH ranges were 4–9, 3–9 and 2–8 for I, II and III-membranes, respectively. Selectivity coefficient values for membrane II were better than those for membranes I and III. The effects of increasing KC1 concentration and temperature changes were explained for the three electrodes. The isothermal temperature coefficients were 0.00145, 0.0007 and 0.00055 V/ °C for electrodes I, II and III. Electrode III was applied for the determination of ephedrine in its pharmeaceutical preparations with an overall relative standard deviation range of 1.3–2.4% and an overall mean recovery value of 98.1%.  相似文献   

5.
A new chromium(III) PVC membrane sensor incorporating ptertiary‐butyl calix[4]arene as ionophore, potassium tetrakis as additive and dibutyl phthalate (DBP) as plasticizer was constructed. The electrode exhibited an excellent potentiometric response over a wide concentration range of 1.0×10?7–1.0×10?1 M with a Nernstian slope of 20±0.5 mV per decade. The detection limit was 5.0×10?8 M. The electrode showed a better performance over a pH range of 3.0–8.0, and had a short response time of about <15 s.The electrode was successfully applied to potentiometric titration of Cr (III) with EDTA and for direct determination of chromium(III) in waste water.  相似文献   

6.
The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L1) and N,N′-bis(acetoacetanilide)-triethylenetetraammine (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L1:PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 × 10−8 to 1.0 × 10−1 M Cr3+ with limit of detection 5.6 × 10−8 M. The proposed sensor manifest advantages of relatively fast response (10 s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.  相似文献   

7.
Determination of Chromium in Natural Water by Stripping Voltammetry   总被引:1,自引:0,他引:1  
Conditions were optimized for determining microgram amounts of chromium by stripping voltammetry with a modified carbon-paste electrode. The developed procedures were applied to the analysis of different waters. The proposed procedures exhibit high performance characteristics and ensure the determination of 9.6 × 10–9 to 1.0 × 10–6 M chromium.  相似文献   

8.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

9.
An extract of crystal violet-tetrachloroferrate(III) in nitrobenzene was used to prepare a tetrachloroferrate(III)-selective liquid membrane electrode with a poly(vinyl chloride) support. The optimal conditions to determine 2.5 × 10–5 – 5.0 × 10–2 M iron(III) as tetrachloroferrate(III) (anionic slope 56 mV/decade, detection limit 7.9 × 10–6 M) were found to be 4.0–5.5.M total chloride in 0.75–1.5M hydrochloric acid. The electrode was reliably applied to determine iron in human blood, haematite and mineralized vitamin syrup by direct potentiometry, standard and sample additions as well as standard subtraction techniques.  相似文献   

10.
Dinaphthyl macrocyclic polyethers were synthesized and used as neutral carriers for preparing primary amine drug sensitive PVC membrane electrodes. Contrary to the ion-associate based electrodes, which show an excellent potentiometric response to quaternary ammonium ions and the like, but a very poor response to primary amines, the macrocyclic polyether-based electrodes showed potentiometric response characteristics with primary amines preferred. Dinaphthyl macrocyclic polyether-based electrodes are superior to those based on common macrocyclic polyethers for their potentiometric selectivity coefficients much lower than those of the latter. The main characteristics of a dinaphthyl-20-crown-6-based benzyl amine sensitive electrode are as follows: linear response range, 4.2 × 10–5 – 1.0 ×10–1 M; slope, 51.3 mV/decade; and detection limit, 4.6 × 10–6 M. A mexiletine sensitive electrode was prepared using dinaphthyl-23-crown-7 with following performance features: linear response range, 2.0 × 10–5 – 1.0 ×10–1 M; slope, 52.1mV/decade; and detection limit, 5.0 × 10–6 M.  相似文献   

11.
Summary The catalytic adsorptive stripping voltammetric determination of chromium using diethylenetriaminepentaacetic acid (DTPA) is only possible when chromium(III) is preliminarily oxidized to chromium(VI) which can be accomplished by UV-irradiation of the oxygen saturated solution at pH 6.0–7.0. A chromium(III)-chromium(VI) speciation can be performed in the range 10–10 mol/l upto 10–6 mol/l employing the coprecipitation of chromium(III) with Al(OH)3. The interference of other metal ions was also studied.  相似文献   

12.
A comparative study was made between three types of Cr(III) ion-selective electrodes: PVC membrane electrode, silver coated electrode and modified carbon paste electrode based on N,N-bis(salicylidene)-o-phenylenediaminatechromium(III) complex (Crsalophen). As anticipated, electrodes with a solid contact, rather than a traditional liquid inner contact, give lower detection limits because of diminished ion fluxes. Often, however, ill-defined solid contact gives rise to instabilities and interferences by oxygen gas. The carbon paste electrode provides a more sensitive and stable device than that afforded by PVC and coated electrodes. The best performance was obtained by an electrode based on the paste containing 3.5 wt% Cr-complex, 48.5% graphite plasticized with a mixture of 24.0 wt% tris(2-ethylhexyl) phosphate (DOPh) + 24.0 wt% dioctyl sebacate (DOS). The sensor has a linear dynamic range of 7.5 × 10-6 to 1.0 × 10-2 M, with a Nernstian slope of 20.1 ± 0.6 mV decade-1, and a detection limit of 1.8 × 10-6. It has a short response time of a bout 8 s and is applicable in a pH range of 4.5-7.7. It was successfully used as an indicator electrode in potentiometric titration of Cr(III) with EDTA and in determination of Cr(III) in water samples and chromium in (Crsalophen).  相似文献   

13.
This paper demonstrates the application of composite multi-walled carbon nanotube (MWNT) polyvinylchloride (MWNT-PVC) based on 1,5-diphenylcarbazide as chromium ionophore in potentiometric measurement. The sensor shows a good Nernstian slope of 19.52 ± 0.40 mV/decade in a wide linear range concentration of 6.3 × 10−8 to 1.0 × 10−2 M for Cr(NO3)3. The detection limit of this electrode was found to be 3.2 × 10−8 M of Cr(NO3)3 and is applicable in a pH range of 3.0-6.8. It has a short response time of about 10 s. This chromium electrode has a good selectivity over 16 various metal ions. The practical analytical utility of this electrode was demonstrated by measurement of Cr(III) in drinking water and mineral water samples without any serious preliminary pre-treatment and chromium in multivitamin.  相似文献   

14.
Procedures were developed for determining ionol by voltammetry and by coulometric titration with electrogenerated chlorine using the amperometric indication of the titration end point. Possible mechanisms of ionol oxidation with electrogenerated chlorine and its electrochemical oxidation at a glassy carbon and a gold electrode were discussed. Procedures were developed for determining ionol in mineral oil in analytical ranges from 1.0 × 10–4 to 1.0 × 10–2 M (RSD = 9%) and from 3.0 × 10–5 to 4.0 × 10–3 M (RSD = 9%) using a glassy carbon and a gold electrode, respectively. The detection limits for ionol at the glassy carbon and gold electrode were 2.8 × 10–4 and 1.0 × 10–5 M, respectively. The detection limit in coulometric titration was 20 g/mL.  相似文献   

15.
A new highly selective thiocyanate electrode based on N,N-bis-(furaldehyde)-1,2-phenylenediamine-dipicolyl copper(II) complex [Cu(II)-BFPD] as neutral carrier is described. The electrode has an anti-Hofmeister selectivity sequence: SCN>I>Sal>ClO4 >Br>NO2 >Cl>NO3 >SO4 2–>SO3 2–>H2PO4 and a near-Nernstian potential linear range for thiocyanate from 1.0×10–1 to 5.0×10–6 mol L–1 with a detection limit 2.0×10–6 mol L–1 and a slope of 57.5 mV decade–1 in pH 5.0 of phosphate buffer solution at 20 °C. The response mechanism is discussed on the basis of results from A.C. impedance measurement and UV spectroscopy. The anti-Hofmeister behavior of the electrode results from a direct interaction between the central metal and the analyte ion and a steric effect associated with the structure of the carrier. The electrode has the advantages of simplicity, fast response, fair stability and reproducibility, and low detection limit. The selectivity of electrodes based on [Cu(II)-BFPD] exceeds that of classical anion-sensitive membrane electrodes based on ion exchangers such as lipophilic quaternary ammonium or phosphonium salts. Application of the electrode for determination of thiocyanate in waste water samples from a laboratory and a gas factory, and in human urine samples, is reported. The results obtained were fair agreement with the results obtained by HPLC.  相似文献   

16.
The construction and general performance characteristics of two novel potentiometric PVC membrane sensors responsive to the pyridoxine hydrochloride known as vitamin B6 (VB6) are described. These sensors are based on the use of the ion-association complexes of the pyridoxine cation with molybdophosphate and tungstophosphate counter anions as ion pairs in a plasticized PVC matrix. The electrodes show a stable, near-Nernstian response for 6 × 10–5–1 × 10–2 M VB6 at 25°C over the pH range 2–4 with a cationic slope of 54.0 ± 0.5 and 54.5 ± 0.4 mV per concentration decade for pyridoxine–molybdophosphate and pyridoxine–tungstophosphate, respectively. The two electrodes have the same lower detection limit (4 × 10–5 M), and the response times are 45–60 and 30–45 s in the same order for both. Selectivity coefficients for VB6 relative to a number of interfering substances were investigated. There is negligible interference from many cations, some vitamins, and pharmaceutical excipients. The determination of VB6 in some pharmaceutical preparations using the proposed electrodes gave an average recovery of 98.0 and 99.0% of the nominal value and a mean standard deviation of 1.1 and 0.9% (n = 3) for pyridoxine–molybdophosphate and pyridoxine–tungstophosphate electrodes, respectively. The results compare favorably with data obtained by the British pharmacopoeia method.  相似文献   

17.
An ion-selective electrode for lead(II) based on a dispersion of N,N"-bis(3-methyl salicylidine)-p-phenyl methane diamine particles into a polymeric membrane using coated-wire configuration is described. Membranes based on polyvinyl chloride containing different amounts of plasticizer and ionophore are studied. The best performance in terms of slope (30.3 ± 0.6 mV per decade) and response time (<15 s) is displayed. The sensor shows a Nernstian response for Pb(II) ions over a wide concentration range of 2.0 × 10–5 to 0.10 M. The sensors can be used for more than three months without any considerable divergence in potentials. The selectivity is also good towards the most common univalent and divalent cations and the signal is constant in the pH range 1.6–6.0. An application to lead determination in mineral rocks and wastewater proved to be a success, and it was employed as an indicator electrode in potentiometric titration of CrO2– 4 with lead ions.  相似文献   

18.
A novel amperometric nitrite sensor was developed based on the immobilization of hemoglobin/colloidal gold nanoparticles on a glassy carbon electrode by a titania sol-gel film. The sensor shows a pair of well-defined and nearly reversible cyclic voltammogram peaks for Hb Fe(III)/Fe(II) with a formal potential (E°) of –0.370 V, and the peak-to-peak separation at 100 mV s–1 was 66 mV vs. Ag/AgCl (3.0 M KCl) in a pH 6.9 phosphate buffer solution. The formal potential of the Hb Fe(III)/Fe(II) couple shifted linearly with pH with a slope of –50.0 mV/pH, indicating that electron transfer accompanies single-proton transportation. The sensor exhibited an excellent electrocatalytic response to the reduction of nitrite. The reduction overpotential was 0.45 V below that obtained at a colloidal gold nanoparticles/TiO2 sol-gel film-modified GCE. The linear range for nitrite determination for the sensor was 4.0×10–6 to 3.5×10–4 M, with a detection limit of 1.2×10–6 M. The stability, repeatability and selectivity of the sensor were also evaluated.  相似文献   

19.
A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0×10–8 to 2.0×10–2 mol L–1 with a detection limit of 8.0×10–9 mol L–1 and a slope of –59.0±0.5 mV/decade in 0.01 mol L–1 phosphate buffer solution (pH 3.0, 20°C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV–Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.  相似文献   

20.
Electrochemical detection of hydrogen peroxide using an edge-plane pyrolytic-graphite electrode (EPPG), a glassy carbon (GC) electrode, and a silver nanoparticle-modified GC electrode is reported. It is shown, in phosphate buffer (0.05 mol L–1, pH 7.4), that hydrogen peroxide cannot be detected directly on either the EPPG or GC electrodes. However, reduction can be facilitated by modification of the glassy-carbon surface with nanosized silver assemblies. The optimum conditions for modification of the GC electrode with silver nanoparticles were found to be deposition for 1 min at –0.5 V vs. Ag from 5 mmol L–1 AgNO3/0.1 mol L–1 TBAP/MeCN, followed by stripping for 2 min at +0.5 V vs. Ag in the same solution. A wave, due to the reduction of hydrogen peroxide on the silver nanoparticles is observed at –0.68 V vs. SCE. The limit of detection for this modified nanosilver electrode was 2.0×10–6 mol L–1 for hydrogen peroxide in phosphate buffer (0.05 mol L–1, pH 7.4) with a sensitivity which is five times higher than that observed at a silver macro-electrode. Also observed is a shoulder on the voltammetric wave corresponding to the reduction of oxygen, which is produced by silver-catalysed chemical decomposition of hydrogen peroxide to water and oxygen then oxygen reduction at the surface of the glassy-carbon electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号