共查询到12条相似文献,搜索用时 0 毫秒
1.
T. Mihara K. Miyamoto M. Kida T. Sasaki N. Aoki Y. Ochiai 《Superlattices and Microstructures》2003,34(3-6):383
A multiwall carbon nanotube crossroads has been fabricated by a manipulation technique using a glass microcapillary, and the low temperature transport properties investigated. The two-terminal conductance of an individual tube shows Tomonaga–Luttinger liquid behavior G∝Tα at high temperature and dI/dV ∝V α at low temperature. However, no evidence of such a power-law behavior is obtained in the four-terminal conductance at the junction, where the conductance shows an almost metallic behavior ‘corrected’ by weak localization. Weak localization would essentially appear in electron states at the junctions of MWNTs. 相似文献
2.
S. KhabazianS. Sanjabi 《Applied Surface Science》2011,257(22):9366-9370
A homogenous and adhesive multi-walled carbon nanotube (MWCNT) coating was electrophoretically deposited on stainless steel from an aqueous solution by applying high strength electric fields. Then, nickel was electrodeposited on MWCNT films. MWCNTs content in the composite coatings was reached to 12.5 wt% which was much higher than the content of MWCNTs in conventional nickel-MWCNT electrodeposited coatings. The hardness value of composite coatings significantly increased up to 870 Vickers which it was measured by both micro and nanohardness tests. 相似文献
3.
Wen-Pin Wang Sheng-Rui Jian Huy-Zu Cheng Jenh-Yih Juang Chang-Pin Chou 《Applied Surface Science》2010,256(7):2184-2188
The field emission characteristics of carbon nanotubes (CNTs) grown by thermal chemical vapor deposition (CVD) and subsequently surface treated by high-density Ar plasma in an inductively coupled plasma reactive ion etching (ICP-RIE) with the various plasma powers were measured. Results indicate that, after treated by Ar plasma with power between 250 and 500 W, the emission current density of the CNTs is enhanced by nearly two orders of magnitude (increased from 0.65 to 48 mA/cm2) as compared to that of the as-grown ones. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to investigate the structural features relevant to the modified field emission properties of CNTs. The SEM images of CNTs subjected to a 500 W Ar plasma treatment exhibit obvious damages to the CNTs. Nevertheless, the turn-on fields decreased from 3.6 to 2.2 V/μm, indicating a remarkable field emission enhancement. Our results further suggest that the primary effect of Ar plasma treatment might be to modify the geometrical structures of the local emission region in CNTs. In any case, the Ar plasma treatment appears to be an efficient method to enhance the site density for electron emission and, hence markedly improving the electric characteristics of the CNTs. 相似文献
4.
利用巨正则系综蒙特卡罗(GCMC)的方法模拟了氢在多壁碳纳米管中的吸附,氢气分子之间、氢气分子和碳原子之间的相互作用势能采用Lennard-Jones势能模型。模拟了不同结构参数(管内径、管壁数、管壁间距)的多壁碳纳米管在77K和298K下的吸附等温线,分析了多壁碳纳米管的管内径、管壁数以及管壁间距对吸附性能的影响。模拟结果表明:多壁碳纳米管的管壁数和管壁间距对吸附性能的影响较明显;管壁数越少,管壁间距越大,其吸附性能越好;多壁碳纳米管的管内径对其吸附性能的影响甚微。 相似文献
5.
6.
The low-temperature behavior of the specific heat in disordered nanotubes strongly depends on structure changes and is not explained by the phonon contribution. Expression for electronic specific heat is carried out taking into account the multiple elastic electron scattering on impurities and structural inhomogeneities of short-range order type. The calculated electronic specific heat depends on diameter of nanotube, concentration of impurities, parameters of short-range order (structural heterogeneity) and describes the peculiarities of low-temperature behavior of specific heat observed in disordered CNT. 相似文献
7.
《Current Applied Physics》2015,15(12):1593-1598
In this article, we reported the structural and conductive properties of benzene derivatives/carboxylated zigzag SWCNTs. It was noticed that the carboxylated carbon nanotubes were appropriate adsorbents for benzene derivatives. We presented novel density of states and band structures for modified SWCNTs by both carboxylic group and benzene derivatives. The result showed that nitrobenzene/COOH-SWCNT comprising superb electronic properties can be effectually applied for electronic devices and solar cells, instead of aniline/SWCNT combined system. 相似文献
8.
Woo-Sung ChoYang Doo Lee Jinnil ChoiJong Hun Han Byeong-Kwon Ju 《Applied Surface Science》2011,257(6):2250-2253
Photosensitive carbon nanotube (CNT) paste was prepared by 3-roll milling of multi-walled carbon nanotubes (MWNTs), UV-sensitive binder solution, and Ag as filler additives. Arrays of MWNT dots with a diode structure were fabricated by a combination of screen printing method and photolithography using these paste, and acetone utilized as the developer. The MWNT dots were well-defined and the organic binder materials in the dots were partially removed. The MWNT film without a heat treatment showed a high current density of 1.35 mA/cm2 at 3.25 V/μm and low turn-on field of 2.2 V/μm at 100 μA/cm2. Acetone can be used as an efficient developer to form patterns and to remove the organic residues in patterns, simultaneously. 相似文献
9.
Hiroyuki Ishii Franois Triozon Nobuhiko Kobayashi Kenji Hirose Stephan Roche 《Comptes Rendus Physique》2009,10(4):283-296
In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy. To cite this article: H. Ishii et al., C. R. Physique 10 (2009). 相似文献
10.
We demonstrate that the quality of the as-grown single-walled carbon nanotubes (SWCNTs) can be effectively improved by the addition of the B ingredient in the Fe/MgO catalyst. The as-grown SWCNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The SWCNTs prepared by the pure Fe/MgO catalyst have relatively low graphite crystallinity and are coated by much amorphous carbon. The intensity ratio of the D- and G-bands (ID/IG) in Raman spectra is relatively high (0.098 for laser 532 nm and 0.075 for laser 785 nm). The SWCNTs grown from the Fe/MgO catalyst doped with 0.1 part of B have more regular graphite structure with little amorphous carbon. The ID/IG values reduced remarkably (0.041 for laser 532 nm and 0.040 for laser 785 nm). The effect would be attributed to the inhibitory action of the doped B on the formation of radical hydrocarbon species for the formation of SWCNTs. 相似文献
11.
The electronic structures and transport properties of (10,0) single-walled carbon nanotube ((10,0) (SWNT)) with oxygen-containing defect complex are investigated using density functional theory in combination with nonequilibrium Green?s function method. The complex delocalizes the local states of (10,0) SWNT induced by mono- and di-vacancy but strengthens the localization of the states induced by the Stone–Wales defect. As a result, the complex partially restores the transport properties of (10,0) SWNT with vacancies, but reduces the transmission of (10,0) SWNT with Stone–Wales defect. However, the oxygen-containing defect complex only slightly influences the transmission gap and threshold voltage of the system. 相似文献
12.
Control of Aharonov–Bohm oscillations in a AlGaAs/GaAs ring by asymmetric and symmetric gate biasing
B. Krafft A. Frster A. van der Hart Th. Schpers 《Physica E: Low-dimensional Systems and Nanostructures》2001,9(4)
The control of the Aharonov–Bohm effect on a AlGaAs/GaAs ring structure is studied by employing two in-plane-gates. By applying a gate voltage to one of the gates, a change of the oscillation pattern due to the additional potential induced in one branch of the ring is observed. The change of the oscillation frequency as well as the phase is attributed to the multi-channel transport. In case of a symmetric biasing, where both gates are biased simultaneously, a larger voltage is required to change the oscillation pattern than for the case when only one gate is used. This effect is explained by a partial compensation of the phase difference between both branches of the ring. 相似文献