首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering the current interest in capillary electrochromatography (CEC), performed in packed columns, we present the different methods used to pack capillary columns for use in CEC. General considerations on column packing are given and the column fabrication process is discussed in sufficient detail to allow instruction to those who are not experienced in the field. Five different packing methods are discussed to deliver packing material into the capillary column from a practical view point: slurry pressure packing, packing with supercritical CO2, electrokinetic packing, using centripetal forces, and packing by gravity. Entrapment of particulate material by sintering and sol-gel technology is also mentioned. Although slurry pressure packing procedures are most common, higher separation efficiencies are obtained using other packing approaches. Electrokinetic packing seems to be the simplest technique to deliver the packing material into the capillary columns. Nevertheless, as with the other packing techniques, skill and experience are required to complete all the steps involved in the fabrication of packed columns for CEC.  相似文献   

2.
Monolithic columns for capillary electrochromatography (CEC) are receiving quite remarkable attention. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. This review summarizes the current state-of-the-art in this rapidly growing area of CEC with a focus on monolithic capillary columns prepared from synthetic polymers. Recent achievements in column technologies for both high-performance liquid chromatography and capillary electrophoresis are used as the starting point to highlight the influence of these well established analytical methods on the development of monolithic capillary columns for CEC. The effects of individual variables on the separation properties of monolithic capillaries are discussed in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different chromatographic modes.  相似文献   

3.
A series of micro-monolithic columns with different porosities were prepared for capillary electrochromatography (CEC) by in-situ copolymerization of butyl methacrylate, ethylene glycol dimethacrylate, and 2-acrylamido-2-methyl-1-propane-sulfonic acid in the presence of a porogen in fused-silica capillaries of 100 microm I.D. Different column porosities were obtained by changing the ratios of monomers to porogenic solvents. Columns were investigated and evaluated under both pressure-driven (high-performance liquid chromatography, HPLC) and electro-driven (capillary electrochromatography, CEC) conditions. Each column exhibited different efficiency and dependency on flow velocity under electro-driven conditions. Abnormally broad peaks for some relatively bulky molecules were observed. Possible explanations are discussed. The differences in column efficiency and retention behavior between the two eluent-driven modes were studied in detail. In addition, other column properties, such as morphology, porosity, stability and reproducibility, were extensively tested.  相似文献   

4.
A series of methacrylamide-based C16 monolithic columns were prepared and characterized to determine how their porous structural properties and chromatographic behavior are affected by the percentages of functional monomer, base monomer, and cross-linker in the polymerization solution. Baseline separation of 6 neutral compounds can be readily obtained in an optimized column. Furthermore, the effects of organic additive in the mobile phase, operating voltages, and temperature on retention behaviors and separation efficiencies were also studied. The separation mechanism is also discussed. High column efficiency and good reproducibility indicate that the monolithic columns hold considerable promise.  相似文献   

5.
Fabrication of porous frits to retain stationary phases is a critical issue in column preparation for capillary electrochromatography (CEC). In this work, porous frits were prepared by applying an external magnetic field to magnetically responsive particles placed inside a fused-silica capillary. Three batches of uniform magnetite spheres with particle diameters of 0.3, 0.4, and 0.6 μm and saturation magnetization values of 73.03, 74.41, and 77.83 emu/g, respectively, were used as frit particles and octadecyl- and phenyl-bonded silica gels were packed successfully into frit-containing capillaries. The performance of the resulting magnetically immobilized frits and packed columns was evaluated. The electroosmotic mobilities in capillaries containing outlet frit only were found to be reduced by 2–4% whereas the plate heights of an unretained marker increased by 30–50% as compared to those in open capillaries. These variations are believed to be associated with the inhomogeneities of the packed structure of the frits. The magnetically immobilized frits showed adequate mechanical strength to withstand the flow drag force, allowing separation in capillaries packed with 5-μm stationary phases up to 10–15 cm, thus rendering column efficiency and reproducibility comparable with those obtained with sintered frits. Taken together, retaining frits made of uniform magnetite particles serves as a viable alternative to sintered frits for column preparation, which offers several distinct advantages such as ease of preparation, improved durability as compared to sintered frits where the removal of the polyimide coating makes the packed column susceptible to breakage, and use of large-bore capillaries for semipreparative separations.  相似文献   

6.
A monolithic silica stationary phase functionalized with an enantioselective strong cation exchanger based on an aminosulfonic acid derivative was used for chiral separations of basic test solutes by nonaqueous CEC and capillary LC. The effects of the applied electric field as well as the ionic strength in the eluent on electrokinetic and chromatographic contributions to the overall separation performance in the electrically driven mode were investigated. Hence, under the utilized experimental conditions, i. e., at an electric field strength in the range of approximately 120-720 V/cm (applied voltages 4-24 kV) and an ionic strength of the counterion between 5 and 25 mM (at constant acid-to-base, i. e., co- to counterion ratio of 2:1), no deviations from the expected linearity of the EOF were observed. This led to the conclusion that an occurrence of the so-called electrokinetic effects of the second kind resulting from electric double layer overlap inside the mesopores of the monolithic stationary phase and concentration polarization phenomena were largely negligible. Additional support to this conclusion was inferred from the observed independence of CEC retention factors on the electric field strength across the investigated ionic strength range of the BGE. As a consequence, a simple framework allowing for calculation of the CEC mobilities from the individual separation contributions, viz. electroosmotic and electrophoretic mobilities as well as retention factors, could be applied to model CEC migration. There was a reasonable agreement between calculated and experimental CEC mobility data with deviations typically below 5%. The deconvolution of the individual contributions to CEC migration and separation is of particular value for the understanding of the separation processes in which electrophoretic migration of ionic sample constituents plays a significant role like in ion-exchange CEC and may aid the optimization procedure of the BGE and other experimental conditions such as the optimization of the surface chemistry of the stationary phase. In combination with the remarkable column performance evident from the low theoretical plate heights observed under CEC conditions for all test solutes (3.5-7.5 microm in the flow rate range of 0.4-1.2 mm/s, corresponding to (130,000-300,000 plates per meter), the presented framework provides an attractive tool as the basis for the assessment of chromatographic selectivities in a miniaturized CEC screening of new selectors and chiral stationary phases (CSPs), respectively, from experimental CEC data and known CE mobilities.  相似文献   

7.
Porous sol-gel frits are fabricated in a capillary column by filling it with a solution of 3-(trimethoxysilyl)propyl methacrylate, hydrochloric acid, water, toluene (porogen), and a photoinitiator (Irgacure 1800) and exposing it to UV light at 365 nm for 5 min. The separation column (30 cm x 75 microm I.D.) contains between the inlet and outlet frits a 15-cm packed segment filled with 5-microm silica particles modified with the chiral compound (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine. A detection window (1 mm long) is placed immediately after the outlet frit. To demonstrate the performance of this chiral separation column, mixtures of 16 different amino acids (three of which are not naturally occurring) derivatized with the fluorogenic reagent 4-fluoro-7-nitro-2,1,3-benzoxadiazole were separated by capillary chromatography. The enantiomeric separation of the column results in a resolution ranging from 1.21 to 8.29, and a plate height ranging from 8.7 to 39 microm.  相似文献   

8.
In this study, the molecular imprinting method was used to separate enantiomeric forms of chiral antidepressant drug, R,S-citalopram (R,S-CIT) in aqueous solution by CEC system combining the advantages of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). For that, an amino acid-based molecularly imprinted monolithic capillary column was designed and used as a stationary phase for selective separation of S-citalopram (S-CIT) for the first time. S-CIT was selectively separated from the aqueous solution containing the other enantiomeric form of R-CIT, which is the same in size and shape as the template molecule. Morphology of the molecularly imprinted (MIP S-CIT) and non-imprinted (NIP S-CIT) monolithic capillary columns was observed by scanning electron microscopy. Imprinting efficiency of MIP S-CIT monolithic capillary column used for selective S-CIT separation was verified by comparing with NIP S-CIT and calculated imprinting factor (I.F:1.81) proved the high selectivity of the MIP S-CIT for S-CIT. Cavities formed for S-CIT form enabled selective (α = 2.08) separation of the target molecule from the other enantiomeric R-CIT form. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 7.68 × 10−6 m2/Vs for R,S-CIT at pH 7.0 10 mM PB and 50% ACN ratio. The performance of both MIP S-CIT and NIP S-CIT columns was estimated by repeating the R,S-CIT separations with intra-batch and inter-batch studies for reproducibility of retention times of R,S-CITs. Estimated RSD values that are lower than 2% suggest that the monolithic columns separate R,S-CIT enantiomers without losing separation efficiency.  相似文献   

9.
Designed especially for capillary electrochromatography (CEC), silicate-entrapped columns are made by trapping particles of chromatographic packing material in a network of silica. Once entrapped, the capillary no longer requires frits. This renders a more homogeneous and stable packed bed. Accidental breakage of the fragile frits is not an issue with these robust columns. Columns packed with reverse-phase material subjected to silicate entrapment demonstrated faster separations of retained analytes and increased efficiencies compared with nonentrapped columns. The method was also used to prepare chiral CEC columns by entrapping a molecular imprinted polymeric (MIP) packing having minimal surface charge density, thus being unable alone to support sufficient electroosmotic flow for CEC.  相似文献   

10.
Malik A 《Electrophoresis》2002,23(22-23):3973-3992
The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology.  相似文献   

11.
CEC is a high performance electrodriving liquid phase separation technique. It does not need complex and sophisticated high pressure instrumentation for nanoflow driving. This is attractive for parallel multicolumn analysis. To this end, high throughput methods for column preparation are needed to support the use of multiple columns. In this study, we directly used CEC mobile phase solution as the packing solvent, and realized rapid preparation of capillary columns based on a single particle fritting technology. The method presented high preparation throughput compared with other reported methods based on various fritting technologies. The single particle fritting approach promoted column preparation throughput to 1 column/h, including all the fritting, packing and conditioning steps. The rapidly prepared columns showed consistently high efficiency of up to 150 000 plates per meter, and usefulness in reversed phase CEC of neutral, charged and biomolecules. With standard peptides as the sample, excellent long term reproducibility (better than 0.8%RSD, ten days, for retention times) was observed.  相似文献   

12.
Immobilized liposome chromatography (ILC) has been proven to be a useful method for the study or rapid screening of drug-membrane interactions. To obtain an adequate liposomal membrane phase for ILC, unilamellar liposomes were immobilized in gel beads by avidin-biotin binding. The retardation of 15 basic drugs on the liposome column could be converted to membrane partitioning coefficients, K(LM). The effects of small or large unilamellar liposomes and multilamellar liposomes on the drug-membrane partitioning were compared. The K(LM) values for both small and large liposomes were similar, but higher than those for the multilamellar liposomes. The basic drugs showed stronger partitioning into negatively charged liposomes than into either neutral liposomes or positively charged liposomes. The membrane fluidity of the immobilized liposomes was modulated by incorporating cholesterol into the liposomal membranes, by changing the acyl chain length and degree of unsaturation of the phospholipids, and by changing the temperature for ILC runs. Our data show that K(LM) obtained using ILC correlated well with those reported by batch studies using free liposomes. It is concluded that negatively charged or cholesterol-containing large unilamellar liposomes are suitable models for the ILC analysis of drug-membrane interactions.  相似文献   

13.
A study was carried out in which 50 microm I.D. fused-silica capillaries were packed with 3 microm octadecylsilane bonded silica, from the same batch, by four methods; liquid slurry and carbon dioxide supercritical carrier, each with and without the use of an ultrasonic probe. A neutral test mixture was analysed by capillary column in reversed-phase mode, and the reproducibility of the electroosmotic flow and of migration time, column efficiency and retention factors, was determined. Initially results suggested that there was no significant difference between properties of columns packed by different methods, and a more thorough statistical evaluation confirmed this; differences observed in the column performance were attributed to random variations between replicate columns, and not between packing methods. However, the variation was least when applying the ultrasonication during liquid slurry.  相似文献   

14.
A novel approach is introduced and evaluated for the preparation of silica-based monoliths by a sol–gel technique where in situ polymerization was carried out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis generated radicals directly on the monomer, thereby avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns was studied in the modes of CEC, p-CEC and low pressure-driven separation, all of which exhibited reversed-phase character. Various operational parameters, such as column temperature, separation voltage, acetonitrile content and buffer pH, were varied to assess their influence on column performance in the separation of a series of neutral compounds including thiourea, benzene, toluene, ethyl benzene, biphenyl and naphthalene. A scanning electron micrograph of a cross-section of the capillary column showed that the gel took the form of a spherical particle aggregate and adhered to the column inner wall. It provided a viable alternative to either thermally initiated or photo polymerization for the preparation of monolithic columns.  相似文献   

15.
16.
A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm+) were prepared by two approaches (“one-pot” approach and “anion-exchange” approach). The effects of different anions (bromide, Br; tetrafluoroborate, BF4; hexafluorophosphate, PF6; and bis-trifluoromethanesulfonylimide, NTf2) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by “one-pot” approach, the EOF decreased in the order of ViOcIm+Br > ViOcIm+BF4 > ViOcIm+PF6 > ViOcIm+NTf2 under the same CEC conditions; the ViOcIm+Br based column exhibited highest column efficiencies for the test small molecules; the ViOcIm+NTf2 based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm+NTf2 based column corresponding to the highest column efficiency of 479 000 N m−1 for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.  相似文献   

17.
Summary Columns for open-tubular (OT) capillary electrochromatography (CEC), coated with 1,4,7,10-tetraazacyclotridecane-11,13-dione (dioxo[13]aneN4) by use of the sol-gel technique, have been investigated for the first time. Dioxol[13]aneN4 was reacted with 3-(2-cyclooxypropoxy)propyltrimethoxysilane and the product was then mixed with tetraethoxysilane (TEOS) and water to form a glass matrix as a network in which the stationary phase (dioxo[13]aneN4) was incorporated. In comparison with OTCEC columns prepared by the sol-gel process with TEOS only, the sol-gel-derived macrocyclic dioxopolyamine columns enabled better separations of a mixture of isomeric nitrophenols and benzenediols, a mixture of isomeric aminophenols and diaminobenzenes, and a mixture of four biogenic monoamine neurotransmitters. High efficiencies (60 000—340 000 plates m−1) were achieved for isomeric benzenediols, aminophenols, nitrophenols, and diaminobenzenes. Migration time and theoretical plate number reproducibility was satisfactory;RSD was <2% for one column and <8.5% from column to column.  相似文献   

18.
The need for novel packing materials in both capillary electrochromatography (CEC) and capillary liquid chromatography (CLC) is apparent and the development towards more selective, application-oriented chromatographic phases is under progress world-wide. In this study we have synthesized new polyethyleneimine (PEI) functionalized Mn(2)O(3), SiO(2), SnO(2), and ZrO(2) particles for the fabrication of packed capillary columns for CEC and CLC. The nanocasting approach was successful for the preparation of functionalized metal oxide materials with a controlled porosity and morphology. PEI functionalization was done using ethyleneimine monomers to create particles which are positively charged in aqueous solution below pH 9. This functionalization allowed the possibility to have both hydrophobic (due to its alkyl chain) and ionic interactions (due to positively charged amino groups) with selected compounds. For comparison aminopropyl-functionalized silica was also synthesized and tested. Both slurry pressure and electrokinetic packing procedures used gave similar results, but fast sedimentation of the material caused some problems during the packing. The high stability and wide pH range of PEI-functionalized SiO(2) material, with potential for hydrophobic and electrostatic interactions, proved to be useful for the CEC and CLC separation of some model acidic and neutral compounds.  相似文献   

19.
Pressurized flow electrochromatography (PEC) is a hybrid of capillary LC and capillary electroendosmotic chromatography (CEC). Both a pressure gradient and an electric field are applied across a packed capillary. The feasability of a simple, easy to handle PEC instrumentation is demonstrated. Home made capillary columns with four different silica-based reversed phase packings have been operated under PEC conditions separating non ionic and ionic low molecular weight analytes. The capillary columns have been characterized with respect to their separation efficiency and selectivity and the results have been compared to those obtained with the purely pressure driven system. An electrochromatographic capacity factor is discussed.Dedicated to Professor Dr. Dr. h.c. mult. J.F.K. Huber on the occasion of his 70th birthday  相似文献   

20.
Chemically bonded silica gels were prepared in a capillary by pumping an ethanolic solution of a silylating reagent, such as octadecyltrimethoxysilane, 3-aminopropyltrimethoxysilane and dimethyloctadecyltrimethoxysilylpropylammonium chloride into a heated capillary packed with bare silica particles. The silylation reactions were completed in a short time and thus-prepared columns showed high column efficiency and high reproducibility. Examples are shown for the separation of 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of aldopentoses on a 3-aminopropylated silica column and benzoate homologues as well as PMP derivatives of the component monosaccharides of glycoproteins on an octadecylammonium column. Since the presence of frit filters hampers high efficiency separation, an attempt was made to fix the bed of modified silica gel particles to the capillary inner wall by a cross-linking technique. The results indicated that this technique is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号