首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.  相似文献   

2.
Computations have been performed for homogeneous and radially inhomogeneous spheres plus agglomerated structures composed of spherical primary units. The ranges of refractive index and particle size considered are typical of soot in flames. The effects of uncertainty in the refractive index and neglect of its radial distribution on inferring spherical particle sizes and concentrations from in situ light-scattering measurements are delineated. A framework is established for computing various scattering characteristics of agglomerated particles in terms of the scattering functions for spherical particles. The results achieved for agglomerates indicate that mean values of the particle concentration, number of units in an agglomerate and overall agglomerate size may be inferred from light-scattering data.  相似文献   

3.
贾光明  张贵忠  向望华 《光子学报》2006,35(9):1293-1295
建立了一套利用线阵CCD探测散射光强从而测定粒径的实验装置.该装置采用线阵CCD取代传统的同心环探测器,并采用一台小尺寸全固态绿光激光器取代传统的He-Ne激光器.理论上采用全Mie氏散射理论,自行编写了实验数据的计算机拟合程序,可以由实验测得的散射光强角分布反演求出粒径分布信息.对粒径分别为4.91 μm和9.88 μm的聚苯乙烯小球均取得了良好的粒径测量结果.该装置被证实可用于测定的粒径范围为0.7 μm~44.0 μm.  相似文献   

4.
We analyze both the intensity and linear polarization of cosmic dust particles by using the physically exact superposition T-matrix method in a fixed orientation for various aggregates of spheres and DDA for the aggregates of Gaussian random spheres. We study both the spherical geometry (in cometary comae) and cylindrical slabs (for regoliths) up to 2000 monomers with size parameters less than ∼3. It is straightforward to produce the observed linear polarization in both geometries while the typically convex and strong opposition spike seems to require wide regolith geometries. The dependence of various parameters on light scattering has also been studied in a rather detailed form. In applications to the cometary polarization we can fit the data in six colors from UV to the J band at a very good accuracy. We, however, emphasize that we do not claim our model to be unique. The most important parameters here are the refractive index and the size distribution of submicron particles. Rest of the parameters has only a minor role. We also found that it is critically important to use several realizations from any assumed particle geometry model because corresponding scattering characteristics can vary quite a lot.  相似文献   

5.
The numerically exact superposition T-matrix method is used to compute, for the first time to our knowledge, electromagnetic scattering by finite spherical volumes composed of polydisperse mixtures of spherical particles with different size parameters or different refractive indices. The backscattering patterns calculated in the far-field zone of the polydisperse multiparticle volumes reveal unequivocally the classical manifestations of the effect of weak localization of electromagnetic waves in discrete random media, thereby corroborating the universal interference nature of coherent backscattering. The polarization opposition effect is shown to be the least robust manifestation of weak localization fading away with increasing particle size parameter.  相似文献   

6.
A coherent scattering of electromagnetic waves by clusters of inertial Rayleigh particles in atmospheric turbulence is considered. A preliminary estimate based on the Maxwell-Garnett theory and the Rayleigh approximation for single clusters demonstrates an importance of the coherent scattering contribution. It is confirmed by a general solution in a combination with theoretical estimates for the two-point probability density function for low-inertia spherical particles in isotropic turbulence. An approximate analytical expression for the coefficient characterizing effect of coherent scattering by the particle clusters is derived. The calculations for small Stokes numbers typical of water droplets in cumulus clouds yield an estimate of the coherent scattering effect on the microwave radar reflection. The model suggested allows solving the inverse problem to determine the pair correlation function for cloud particles. It is expected to be important for the investigations on particle–turbulence interaction in the atmosphere. The theoretical model developed is true not only in the limit of low-inertia particles and can be potentially used at arbitrary Stokes numbers in other applications.  相似文献   

7.
Random media with different structural properties were used to simulate some of the differences in liver morphology that may occur with disease. First, a reference medium consisting of glass spheres in agar was studied to verify the accuracy and precision of the data obtained with our equipment and processing procedures. Then, studies were conducted on a pair of media comprised of graphite particles in gelatin, one of the pair with twice as many particles as the other. Finally, studies were carried out on a set of media composed of Sephadex particles in water. Three samples were employed, each with a different size of Sephadex. The average differential scattering cross section per unit volume sigma sd (v) of each media was obtained as a function of scattering angle v and frequency. The measured sigma sd were compared with predictions based on models of scattering from the media. The agreement between the measured and predicted sigma sd of the glass sphere medium was excellent. The graphite medium with twice the number of particles as the other was observed to scatter twice as much power as the other. The shape of the angular scattering pattern measured from each size of Sephadex followed the prediction reasonably well. The largest size exhibited marked variations in the shape of sigma sd as a function of frequency, while the absolute magnitude of sigma sd of the smallest size grade was extremely sensitive to frequency. Our results suggest that the dependence of sigma sd (v) on scatterer number density and size, both in absolute magnitude and shape, can provide reliable information which may be useful in the diagnosis of some diseases.  相似文献   

8.
The total light scattering method for particle size measurement has a series of outstanding features, e.g. very simple instrumental arrangement, no serious requirements for its optical, photodetecting and electronic systems and its ease of use. Nevertheless, some problems still remain unsolved which should be dealt with to improve its further applications. An improvement has been made in this work. Comprehensive theoretical studies showed that this method is applicable to particle size analysis in the range 0.1–10 μm, i.e. for those particles whose diameter lies between the lower limit of the diffraction method and the upper limit of photon correlation spectroscopic (PCS) technique. Experimental studies with different monodisperse polystyrene latex spheres as standard reference material give good agreement with their nominal values.  相似文献   

9.
用T矩阵方法计算了折射率虚部的范围在0.001至0.1的几种椭球粒子随机取向时在几种等效尺度参数下的光散射与吸收特性,并与等效的球形粒子的光散射结果进行了比较。分析结果表明:椭球粒子的吸收特性与等效的球形粒子的吸收特性存在着差别,这种差别随粒子的形状、尺度和折射率而改变,考虑到目前气溶胶粒子复折射率虚部的测量精度,以等效的球体粒子处理非球形粒子的吸收不会带来显著的误差。  相似文献   

10.
The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.  相似文献   

11.
This paper presents a review of light scattering results on static and dynamic properties of ordered colloidal suspensions of charged polystyrene particles and fractal colloidal aggregates. Our studies on static structure factor,S(Q), of ordered monodisperse colloidal suspensions and binary mixtures of particles with different particle diameters, measured by angle-resolved Rayleigh scattering will be discussed. This will include determination of bulk modulus using gravitational compression and observation of colloidal glass (inferred from splitting of the second peak inS(Q)). Dynamic light scattering, with real time analysis of scattered intensity fluctuations, is used to get information about Brownian dynamics of the particles. Recent advances in the field of light scattering from colloidal aggregates which show fractal geometry will also be discussed.  相似文献   

12.
Some particle size analyzers, such as the Par-Tec® 100 (Laser Sensor Technology, Redmond, WA, USA), measure the so-called cord length distribution (CLD) as the laser beam emitted from the sensor randomly crosses two edges of a particle (a cord length). The objectives of this study were to develop a model that can predict the response of the Par-Tec® 100 in measuring the CLD of a suspension for spherical and ellipsoidal particles and to infer the actual particle size distribution (PSD) using the measured CLD output. The model showed that the measured CLD is reasonably accurate for the spherical particles. However, this measurement progressively deteriorates as the shape of particles changes from spherical to ellipsoidal with large ratios of major to minor diameters. Experimental results obtained with spherical particles having a normal and a non-normal PSD indicated that the Par-Tec® 100 measurements deteriorate as the PSD deviates from a normal distribution. The information obtained from these experiments also showed that the model can reasonably predict the Par-Tec® response. Use of the inferred PSD rather than the measured CLD made a major improvement in estimating the actual PSD. Mean particle size analysis revealed that the Par-Tec® 100 volume-weighted mean particle size is closest to the unweighted mean particle size measured by sieve analysis.  相似文献   

13.
The polarization of light scattered into directions out of the plane of incidence by polystyrene latex spheres upon a silicon substrate was measured for p -polarized incident light. The experimental data show good agreement with theoretical predictions for three sizes of spheres. These results demonstrate that the polarization of light scattered by particles can be used to determine the size of particulate contaminants on silicon wafers. Theoretical models, based on successive degrees of approximation, indicate that the mean distance of a particle from the surface is the primary determinant of the scattered light polarization for small out-of-plane scattering angles.  相似文献   

14.
The filtration efficiency for nanoparticles down to 1 nm in size through glass fibrous filters was measured using an improved PSM-CNC system. In addition, the effects of relative humidity and particle charge were investigated for various nanoparticle diameters. The results show that the filtration efficiencies were independent of humidity and affected by particle charge in the case of particles below 100 nm in size. For particles smaller than 2 nm, the particle penetrations increased with decreasing particle size. These results suggest that the thermal rebound phenomena would be operative for nanoparticles with diameters below 2 nm, even though it would depend on the states of both the particles and the filter media. These results are particularly important for experimental investigations of the behavior of nanoparticles on a filter.  相似文献   

15.
One of the most frequently applied techniques to detect nanoparticles in air is analyzing laser light scattering. This technique is very flexible while offering high accuracy and reliability. Yet its functionality highly depends on the sensitivity of the measurement system components. Especially for miniaturized sensor devices with limited space, additional techniques are needed to preserve high intensity of scattered light. In our work we demonstrate a technique using two spherical ring mirrors to identify nanoparticles with diameters below 100 nm in a forward-scattering setup. We succeeded measuring polystyrene particles with diameters of 92 nm with a signal-to-noise-ratio of more than 10.  相似文献   

16.
Choi  M.  Cho  J.  Lee  J.  Kim  H.W. 《Journal of nanoparticle research》1999,1(2):169-183
The evolution of silica aggregate particles in a coflow diffusion flame has been studied experimentally using light scattering and thermophoretic sampling techniques. An attempt has been made to calculate the aggregate number density and volume fraction using the measurements of scattering cross section from 90° light scattering with combination of measuring the particle size and morphology from the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh–Debye–Gans and Mie theory for fractal aggregates and spherical particles, respectively. Using this technique, the effects of H2 flow rates on the evolution of silica aggregate particles have been studied in a coflow diffusion flame burner. As the flow rate of H2 increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of H2 flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. For the cases of high flame temperatures, the particle sizes become larger and the number densities decrease by coagulation as the particles move up within the flame. For cases of low flame temperatures, the primary particle diameters of aggregates vary a little following the centerline of burner and for the case of the lowest flame temperature in the present experiments, the sizes of primary particles even decrease as particles move upward.  相似文献   

17.
We investigate to what extent the full Stokes scattering matrix of an ensemble of wavelength-sized particles with complex shapes can be modeled by employing an ensemble of simple model shapes, such as spheres, spheroids, and circular cylinders. We also examine to what extent such a simple-shape particle model can be used to retrieve meaningful shape information about the complex-shaped particle ensemble. More specifically, we compute the Stokes scattering matrix for ensembles of randomly oriented particles having several polyhedral prism geometries of different sizes and shape parameters. These ensembles serve as proxies for size-shape mixtures of particles containing several different shapes of higher geometrical complexity than the simple-shaped model particles we employ. We find that the phase function of the complex-shaped particle ensemble can be accurately modeled with a size distribution of volume-equivalent spheres. The diagonal elements of the scattering matrix are accurately reproduced with a size-shape mixture of spheroids. A model based on circular cylinders accurately fits the full scattering matrix including the off-diagonal elements. However, the modeling results provide us with only a rough estimate of the effective shape parameter of the complex-shaped particle ensemble to be modeled. They do not allow us to infer detailed information about the shape distribution of the complex-shaped particle ensemble.  相似文献   

18.
Microcontamination of product surfaces by deposited particles is an important problem in clean technologies. A most sensitive product to contamination by particles is a wafer during chip production. Therefore, methods for monitoring particle deposition on wafer surfaces have been developed in the last decade. A wafer with an unstructured and reflecting surface is inserted into the process equipment. After some time, depending on the process, this wafer is removed from the process equipment and is analysed with respect to the number of deposited particles using a wafer scanner. However, in situ particle detection in a process chamber is not possible with this technique. This would be possible if, instead of a monitor wafer, a transparent glass plate is mounted, e.g. in the housing of the process equipment. Then the illuminating and scattered light detection equipment can be mounted outside the process equipment. Since both the illuminating laser beam and the scattered light have to be transmitted through the glass plate, losses will occur, which will reduce the lower limit of detection with respect to particle size. In this article we estimate the detection possibilities theoretically and experimentally. A simple model based on Mie and vector scattering theory has been developed to describe the light-scattering behavior of a single spherical particle on a glass plate with random surface irregularities. The scattered light of individual particles of four particle sizes (1.03, 1.6, 2.92 and 4.23 μm) on the same glass surface and from the uncontaminated area of the glass plate was measured for unpolarized and normally incident light. The values of the scattered light from this model were compared with the experimental results. The comparison shows a reasonable agreement of the angular distribution of the scattered light. The developed model is used to predict the lower limit of detection for particles on a transparent surface. The theoretical estimations show that it should be possible to detect particles of a diameter down to 0.2 μm with the described measurement technique.  相似文献   

19.
Fractal Analysis of Surface Roughness of Particles in Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A fractal dimension for roughness height (RH) is introduced to characterize the degree of roughness or disorder of particle surface characters which significantly influence physical-chimerical processes in porous media. An analytical expression for the fractal dimension of RH on statistically self-similar fractal surfaces is derived and is expressed as a function of roughness parameters. The specific surface area (SSA) of porous materials with spherical particles is also derived, and the proposed fractal model for the SSA of particles with rough surfaces is expressed as a function of fractal dimension for RH and fractal dimension for particle size distribution, relative roughness of particle surface, and ratio of the minimum to the maximum particle diameters of spherical particles.  相似文献   

20.
Summary The scattering of electromagnetic waves in chiral (optically active) media from chiral spheres is studied. Mie-scattering techniques are used to find the exact solution for plane-electromagnetic-wave scattering from a chiral sphere of arbitrary size in an infinitely extended chiral medium of arbitrarily different permeability, permittivity, and chirality, and the scattering and extinction efficiencies for chiral spheres in chiral media are derived. Special cases of achiral exterior medium-chiral sphere and achiral exterior medium-achiral scatterer are considered and in the latter case well-known results of Mie scattering are recovered. Simplified results for small spheres are also found for the limit of Rayleigh scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号