首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imatinib is an important anticancer drug, which binds specifically to the Abl kinase and blocks its signalling activity. To model imatinib:protein interactions, we have developed a molecular mechanics force field for imatinib and four close analogues, which is consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges and Lennard‐Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with imatinib fragments at 32 different positions. We considered both a neutral and a protonated imatinib. The final RMS deviation between the ab initio and force field energies, averaged over both forms, was 0.2 kcal/mol. The model also reproduces the ab initio geometry and flexibility of imatinib. To apply the force field to imatinib:Abl simulations, it is also necessary to determine the most likely imatinib protonation state when it binds to Abl. This was done using molecular dynamics free energy simulations, where imatinib is reversibly protonated during a series of MD simulations, both in solution and in complex with Abl. The simulations indicate that imatinib binds to Abl in its protonated, positively‐charged form. To help test the force field and the protonation prediction, we did MD free energy simulations that compare the Abl binding affinities of two imatinib analogs, obtaining good agreement with experiment. Finally, two new imatinib variants were considered, one of which is predicted to have improved Abl binding. This variant could be of interest as a potential drug. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

2.
Tetracyclines (Tcs) are an important family of antibiotics that bind to the ribosome and several proteins. To model Tc interactions with protein and RNA, we have developed a molecular mechanics force field for 12 tetracyclines, consistent with the CHARMM force field. We considered each Tc variant in its zwitterionic tautomer, with and without a bound Mg(2+). We used structures from the Cambridge Crystallographic Data Base to identify the conformations likely to be present in solution and in biomolecular complexes. A conformational search by simulated annealing was undertaken, using the MM3 force field, for tetracycline, anhydrotetracycline, doxycycline, and tigecycline. Resulting, low-energy structures were optimized with an ab initio method. We found that Tc and its analogs all adopt an extended conformation in the zwitterionic tautomer and a twisted one in the neutral tautomer, and the zwitterionic-extended state is the most stable in solution. Intermolecular force field parameters were derived from a standard supermolecule approach: we considered the ab initio energies and geometries of a water molecule interacting with each Tc analog at several different positions. The final, rms deviation between the ab initio and force field energies, averaged over all forms, was 0.35 kcal/mol. Intramolecular parameters were adopted from either the standard CHARMM force field, the ab initio structure, or the earlier, plain Tc force field. The model reproduces the ab initio geometry and flexibility of each Tc. As tests, we describe MD and free energy simulations of a solvated complex between three Tcs and the Tet repressor protein.  相似文献   

3.
Tetracycline (Tc) is an important antibiotic, which binds specifically to the ribosome and several proteins, in the form of a Tc-:Mg2+ complex. To model Tc:protein and Tc:RNA interactions, we have developed a molecular mechanics force field model of Tc, which is consistent with the CHARMM force field for proteins and nucleic acids. We used structures from the Cambridge Crystallographic Data Base to identify the main Tc conformations that are likely to be present in solution and in biomolecular complexes. A conformational search was also done, using the MM3 force field to perform simulated annealing of Tc. Several resulting, low-energy structures were optimized with an ab initio model and used in developing the new Tc force field. Atomic charges and Lennard-Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with Tc at 36 different positions. We considered both a neutral and a zwitterionic Tc form, with and without bound Mg2+. The final rms deviation between the ab initio and force field energies, averaged over all forms, was just 0.35 kcal/mol. The model also reproduces the ab initio geometry and flexibility of Tc. As further tests, we did simulations of a Tc crystal, of Tc:Mg2+ and Tc:Ca2+ complexes in aqueous solution, and of a solvated complex between Tc:Mg2+ and the Tet repressor protein (TetR). With slight, ad hoc adjustments, the model can reproduce the experimental, relative, Tc binding affinities of Mg2+ and Ca2+. It performs well for the structure and fluctuations of the Tc:Mg2+:TetR complex. The model should therefore be suitable to investigate the interactions of Tc with proteins and RNA. It provides a starting point to parameterize other compounds in the large Tc family.  相似文献   

4.
5.
In molecular simulations with fixed-charge force fields, the choice of partial atomic charges influences numerous computed physical properties, including binding free energies. Many molecular mechanics force fields specify how nonbonded parameters should be determined, but various choices are often available for how these charges are to be determined for arbitrary small molecules. Here, we compute hydration free energies for a set of 44 small, neutral molecules in two different explicit water models (TIP3P and TIP4P-Ew) to examine the influence of charge model on agreement with experiment. Using the AMBER GAFF force field for nonbonded parameters, we test several different methods for obtaining partial atomic charges, including two fast methods exploiting semiempirical quantum calculations and methods deriving charges from the electrostatic potentials computed with several different levels of ab initio quantum calculations with and without a continuum reaction field treatment of solvent. We find that the best charge sets give a root-mean-square error from experiment of roughly 1 kcal/mol. Surprisingly, agreement with experimental hydration free energies does not increase substantially with increasing level of quantum theory, even when the quantum calculations are performed with a reaction field treatment to better model the aqueous phase. We also find that the semiempirical AM1-BCC method for computing charges works almost as well as any of the more computationally expensive ab initio methods and that the root-mean-square error reported here is similar to that for implicit solvent models reported in the literature. Further, we find that the discrepancy with experimental hydration free energies grows substantially with the polarity of the compound, as does its variation across theory levels.  相似文献   

6.
应用从头算方法和ABEEM/MM浮动电荷分子力场, 研究了水合碱土离子团簇Sr2+/Ba2+(H2O)n (n=1-6), 构建了离子-水相互作用的ABEEM/MM势能函数, 获得了水合离子团簇的稳定结构, 计算了结合能. 计算结果表明, ABEEM/MM方法的结果和从头算方法的结果有很好的一致性. 进一步应用ABEEM/MM对Sr2+和Ba2+水溶液进行了分子动力学模拟. 对Sr2+水溶液, 得到的Sr2+-水中氧原子的径向分布函数的第一和第二最高峰分别位于0.257和0.464 nm处, 第一和第二水合层的配位水分子数分别为9.2和11.4; 对Ba2+水溶液, 得到的Ba2+与水中氧原子的径向分布函数的第一和第二最高峰分别位于0.269和0.467 nm处, 第一和第二水合层的配位水分子数分别为9.9和12.4. 这与实验值或其它理论模拟结果有较好的一致性. 对比外层的水分子, 金属离子的极化作用使得溶液中第一水合层中水分子的O―H键长增长, HOH键角减小.  相似文献   

7.
An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally.  相似文献   

8.
Various mechanisms are often used to explain the interaction between electron donors and acceptors. Commonly proposed mechanisms are those in which the acceptor interacts with the aromatic pi-systems in the donor molecule or the acceptor forms a weak interaction of the Lewis acid with Lewis base type. In this study, the above mechanisms were examined as well as other possible mechanisms. Promethazine was chosen as the model drug containing aromatic systems capable of pi-pi interaction as well as N-methyl group capable of forming a complex with the weak Lewis acid, p-chloranil. Our modelling studies revealed that the situation where the p-chloranil interacts with a protonated N-methyl group is the most significant mechanism of interaction, based on the calculated energies for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the Tripos force field energy terms and also the stability of the complexes during molecular dynamics simulations.  相似文献   

9.
10.
We studied geometries and energies of complexes between water and neutral or protonated imidazole by ab initio molecular orbital calculations using the 4-31G basis set with and without the counterpoise correction. Positions of hydration sites and relative binding energies could be also estimated by using the electrostatic field map of imidazole as calculated by our bond increment method. The reliability of the calculations is confirmed by comparing the geometries of the imidazole-water complex to the experimental ones from the Cambridge Structural Database. These were obtained by X-ray diffraction studies on crystals with water bound to a molecule containing the imidazole fragment.  相似文献   

11.
A class II valence force field covering a broad range of organic molecules has been derived employing ab initio quantum mechanical "observables." The procedure includes selecting representative molecules and molecular structures, and systematically sampling their energy surfaces as described by energies and energy first and second derivatives with respect to molecular deformations. In this article the procedure for fitting the force field parameters to these energies and energy derivatives is briefly reviewed. The application of the methodology to the derivation of a class II quantum mechanical force field (QMFF) for 32 organic functional groups is then described. A training set of 400 molecules spanning the 32 functional groups was used to parameterize the force field. The molecular families comprising the functional groups and, within each family, the torsional angles used to sample different conformers, are described. The number of stationary points (equilibria and transition states) for these molecules is given for each functional group. This set contains 1324 stationary structures, with 718 minimum energy structures and 606 transition states. The quality of the fit to the quantum data is gauged based on the deviations between the ab initio and force field energies and energy derivatives. The accuracy with which the QMFF reproduces the ab initio molecular bond lengths, bond angles, torsional angles, vibrational frequencies, and conformational energies is then given for each functional group. Consistently good accuracy is found for these computed properties for the various types of molecules. This demonstrates that the methodology is broadly applicable for the derivation of force field parameters across widely differing types of molecular structures. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1782-1800, 2001  相似文献   

12.
Ab initio based polarizable force field parametrization   总被引:1,自引:0,他引:1  
Experimental and simulation studies of anion-water systems have pointed out the importance of molecular polarization for many phenomena ranging from hydrogen-bond dynamics to water interfaces structure. The study of such systems at molecular level is usually made with classical molecular dynamics simulations. Structural and dynamical features are deeply influenced by molecular and ionic polarizability, which parametrization in classical force field has been an object of long-standing efforts. Although when classical models are compared to ab initio calculations at condensed phase, it is found that the water dipole moments are underestimated by approximately 30%, while the anion shows an overpolarization at short distances. A model for chloride-water polarizable interaction is parametrized here, making use of Car-Parrinello simulations at condensed phase. The results hint to an innovative approach in polarizable force fields development, based on ab initio simulations, which do not suffer for the mentioned drawbacks. The method is general and can be applied to the modeling of different systems ranging from biomolecular to solid state simulations.  相似文献   

13.
This article presents a new ab initio force field for the cofactors of bacterial photosynthesis, namely quinones and bacteriochlorophylls. The parameters has been designed to be suitable for molecular dynamics simulations of photosynthetic proteins by being compatible with the AMBER force field. To our knowledge, this is the first force field for photosynthetic cofactors based on a reliable set of ab initio density functional reference data for methyl bacteriochlorophyll a, methyl bacteriopheophytin a, and of a derivative of ubiquinone. Indeed, the new molecular mechanics force field is able to reproduce very well not only the experimental and ab initio structural properties and the vibrational spectra of the molecules, but also the eigenvectors of the molecular normal modes. For this reason it might also be helpful to understand vibrational spectroscopy results obtained on reaction center proteins.  相似文献   

14.
15.
A new formalism for quantum mechanical / molecular mechanical (QM/MM) dynamics of chemical species in solution has been developed, which does not require the construction of any other potential functions except those for solvent–solvent interactions, maintains all the advantages of large simulation boxes and ensures the accuracy of ab initio quantum mechanics for all forces acting in the chemically most relevant region. Interactions between solute and more distant solvent molecules are incorporated by a dynamically adjusted force field corresponding to the actual molecular configuration of the simulated system and charges derived from the electron distribution in the solvate. The new formalism has been tested with some examples of hydrated ions, for which accurate conventional ab initio QM/MM simulations have been previously performed, and the comparison shows equivalence and in some aspects superiority of the new method. As this simulation procedure does not require any tedious construction of two-and three-body interaction potentials inherent to conventional QM/MM approaches, it opens the straightforward access to ab initio molecular dynamics simulations of any kind of solutes, such as metal complexes and other composite species in solution.  相似文献   

16.
We have developed new force field and parameters for copper(I) and mercury(II) to be used in molecular dynamics simulations of metalloproteins. Parameters have been derived from fitting of ab initio interaction potentials calculated at the MP2 level of theory, and results compared to experimental data when available. Nonbonded parameters for the metals have been calculated from ab initio interaction potentials with TIP3P water. Due to high charge transfer between Cu(I) or Hg(II) and their ligands, the model is restricted to a linear coordination of the metal bonded to two sulfur atoms. The experimentally observed asymmetric distribution of metal ligand bond lengths (r) is accounted for by the addition of an anharmonic (r3) term in the potential. Finally, the new parameters and potential, introduced into the CHARMM force field, are tested in short molecular dynamics simulations of two metal thiolates fragments in water. (Brooks BR et al. J Comput Chem 1983, 4, 1987.1).  相似文献   

17.
A free energy perturbation (FEP) method was developed that uses ab initio quantum mechanics (QM) for treating the solute molecules and molecular mechanics (MM) for treating the surroundings. Like our earlier results using AM1 semi empirical QMs, the ab initio QM/MM-based FEP method was shown to accurately calculate relative solvation free energies for a diverse set of small molecules that differ significantly in structure, aromaticity, hydrogen bonding potential, and electron density. Accuracy was similar to or better than conventional FEP methods. The QM/MM-based methods eliminate the need for time-consuming development of MM force field parameters, which are frequently required for drug-like molecules containing structural motifs not adequately described by MM. Future automation of the method and parallelization of the code for Linux 128/256/512 clusters is expected to enhance the speed and increase its use for drug design and lead optimization.  相似文献   

18.
We present a new self-consistent set of ab initio analytical pair potential to predict specific nonbonded interactions of protein with nucleic acid, of protein with protein, and of nucleic acid with nucleic acid. The purpose of this study is to represent the interaction between biological molecules with an accuracy equivalent to the ab initio molecular orbital calculations, which are used as reference data to obtain the pair potentials. Atoms in nucleic acids and proteins are classified according to their chemical environments. An “effective charge,” a modification of a charge obtained from the Mulliken population analysis, is introduced and used to represent the electrostatic energy. More than 30,000 SCF interaction energies have been calculated to provide the reference data for the fitting procedure that we have adopted in the parameterization of the potentials. The standard deviation is 1.61 kcal/mol for interaction energies spanning the range from about ?220 kcal/mol to +20 kcal/mol. Molecular dynamics simulations, using the above new set of force field, have been performed successfully for the systems where adequate treatments of specific interactions are required: The stability of α-helix of C-peptide and the interaction of spermine with oligonucleotide are examined as preliminary examples.  相似文献   

19.
Classical force fields describe the interaction between atoms that are bonded or nonbonded via simple potential energy expressions. Their parameters are often determined by fitting to ab initio energies and electrostatic potentials. A direct quantum chemical guide to constructing a force field would be the atom-atom partitioning of the energy of molecules and van der Waals complexes relevant to the force field. The authors used the theory of quantum chemical topology to partition the energy of five systems [H2, CO, H2O, (H2O)2, and (HF)2] in terms of kinetic, Coulomb, and exchange intra-atomic and interatomic contributions. The authors monitored the variation of these contributions with changing bond length or angle. Current force fields focus only on interatomic interaction energies and assume that these purely potential energy terms are the only ones that govern structure and dynamics in atomistic simulations. Here the authors highlight the importance of self-energy terms (kinetic and intra-atomic Coulomb and exchange).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号