首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductions in overshoot during aspirin use   总被引:1,自引:0,他引:1  
The overshoot effect was measured before, during, and after the administration of a moderate dose of aspirin. Prior to the drug, detectability of the 6-ms, 3550-Hz signal was 5-11 dB worse when presented 2 ms after the onset of the 200-ms wideband masking noise than when presented 190 ms after masker onset. Following 4 days of aspirin use, detectability in the long-delay condition was unchanged from the predrug value, but (for four of the five subjects) detectability in the short-delay condition was improved by about 4-8 dB. Thus the overshoot effect was markedly reduced by aspirin because the drug partially counteracted the normally poor detectability for signals presented soon after masker onset. This paradoxical improvement in detectability was accompanied by an aspirin-induced loss in detectability of 5-16 dB for a 200-ms sample of that same signal presented in the quiet. Similar paradoxical effects have previously been obtained by inducing a temporary hearing loss with exposure to intense sound. It is presumed that the same basic mechanisms underlie the parallel outcomes. The so-called cochlear amplifier is discussed in this regard, and also the possibility that the known differences in those primary auditory fibers having high and low spontaneous rates may be involved. A supplementary experiment demonstrated that shifting audibility with either a wideband or a narrow-band background noise does not affect the overshoot effect in the same way as does aspirin or exposure to intense sound, further suggesting that the cochlear amplifier must be altered in order for overshoot to be diminished.  相似文献   

2.
The detectability of a 10-ms tone masked by a 400-ms wideband noise was measured as a function of the delay in the onset of the tone compared to the onset of the noise burst. Unlike most studies like this on auditory overshoot, special attention was given to signal delays between 0 and 45 ms. Nine well-practiced subjects were tested using an adaptive psychophysical procedure in which the level of the masking noise was adjusted to estimate 79% correct detections. Tones of both 3.0 and 4.0 kHz, at different levels, were used as signals. For the subjects showing overshoot, detectability remained approximately constant for at least 20-30 ms of signal delay, and then detectability began to improve gradually toward its maximum at about 150-200 ms. That is, there was a "hesitation" prior to detectability beginning to improve, and the duration of this hesitation was similar to that seen in physiological measurements of the medial olivocochlear (MOC) system. This result provides further support for the hypothesis that the MOC efferent system makes a major contribution to overshoot in simultaneous masking.  相似文献   

3.
Absence of overshoot in a dichotic masking condition   总被引:1,自引:0,他引:1  
Brief tonal signals presented soon after the onset of a masking noise are known to be less detectable than signals delayed by several hundred milliseconds. This difference in detectability is known as the "overshoot." Signals of two sorts were studied here--either interaurally in phase (S o) or interaurally out of phase by 180 degrees (S pi). When S omicron signals of 750 Hz and about 14 ms in duration were presented 4 ms after the onset of a diotic, broadband masking noise (N o), detectability was about 6 dB worse than when the signal was presented 325 ms after onset. By contrast, there was no such overshoot when S pi signals were presented at varying times after masker onset; detectability was about the same for all values of signal delay. Accordingly, the difference in performance between N o S o and N o S pi--the masking-level difference or MLD--was large (about 16 dB) with the shortest delays used and diminished (to about 9 dB) as the delay was increased. This absence of overshoot with the S pi signals is in accord with the well-established view that detectability in the dichotic masking conditions is based upon different stimulus information from that used in the diotic masking conditions. Specifically, the evidence confirms the common view that detectability in the diotic conditions is based more or less directly on neural firing rate, whereas, in the dichotic conditions, it is based upon interaural time differences encoded in the periodicity of neural firings.  相似文献   

4.
Effect of masker level on overshoot   总被引:5,自引:0,他引:5  
Overshoot refers to the phenomenon where signal detectability improves for a short-duration signal as the onset of that signal is delayed relative to the onset of a longer duration masker. A popular explanation for overshoot is that it reflects short-term adaptation in auditory-nerve fibers. In this study, overshoot was measured for a 10-ms, 4-kHz signal masked by a broadband noise. In the first experiment, masker duration was 400 ms and signal onset delay was 1 or 195 ms; masker spectrum level ranged from - 10-50 dB SPL. Overshoot was negligible at the lowest masker levels, grew to about 10-15 dB at the moderate masker levels, but declined and approached 0 dB at the highest masker levels. In the second experiment, the masker duration was reduced to 100 ms, and the signal was presented with a delay of 1 or 70 ms; masker spectrum level was 10, 30, or 50 dB SPL. Overshoot was about 10 dB for the two lower masker levels, but about 0 dB at the highest masker level. The results from the second experiment suggest that the decline in overshoot at high masker levels is probably not due to auditory fatigue. It is suggested, instead, that the decline may be attributable to the neural response at high levels being dominated by those auditory-nerve fibers that do not exhibit short-term adaptation (i.e., those with low spontaneous rates and high thresholds).  相似文献   

5.
The "overshoot" effect and sensory hearing impairment   总被引:1,自引:0,他引:1  
The threshold for the detection of a brief tone masked by a longer-duration noise burst is higher when the tone is presented shortly after the onset of the noise than at longer delay times. This finding has been termed the "overshoot" effect [E. Zwicker, J. Acoust. Soc. Am. 37, 653-663 (1965)]. The present letter compared the size of the effect in the better and more impaired ear of six subjects with high-frequency unilateral or asymmetric hearing losses of sensory origin. Thresholds were measured for 5-ms 4-kHz tones presented 10, 200, and 390 ms after the onset of a 400-ms, 2- to 8-kHz noise burst. The better ear of each subject was tested using two noise levels, one equal in sound-pressure level and one equal in sensation level to that used for the impaired ear. Thresholds for all subjects and all ears decreased monotonically with increasing delay time, with the size of the effect typically 5 dB. Thus a small overshoot effect was observed regardless of hearing impairment.  相似文献   

6.
The study examines how overshoot is influenced by masker-signal onset asynchrony when the masker contains frequencies above or below the signal frequency. Masked thresholds were measured for a 2-ms tone at 5 kHz. The measurements were made in a reference condition with a narrow center-band (CB) noise masker (4590-5464 Hz), and in conditions with either a low-fringe (1900-4590 Hz) or a high-fringe noise band (5500-11 000 Hz) added to the CB. The signal always came on 2 ms after the onset of the CB. The time interval, between fringe and signal onsets varied from -98 ms (signal onset before fringe onset) to +502 ms (signal onset after fringe onset). Results show that overshoot is largest, 8-11 dB, for a high fringe with onset occurring between 8 ms before the signal onset and 12 ms after it. Thus, pronounced overshoot is observed even when the high fringe is gated on after the signal's offset. Low fringes produce no more than 4 dB of overshoot, much less than high fringes produce. The finding of pronounced overshoot elicited by a high fringe presented shortly after the end of the signal suggests that overshoot is governed, at least in part, by central mechanisms.  相似文献   

7.
The detectability of a masked sinusoid increases as its onset approaches the temporal center of a masker. This study was designed to determine whether a similar change in detectability would occur for a silent gap as it was parametrically displaced from the onset of a noise burst. Gap thresholds were obtained for 13 subjects who completed five replications of each condition in 3 to 13 days. Six subjects were inexperienced listeners who ranged in age from 18 to 25 years; seven subjects were highly experienced and ranged in age from 20 to 78 years. The gaps were placed in 150-ms, 6-kHz, low-passed noise bursts presented at an overall level of 75 dB SPL; the bursts were digitally shaped at onset and offset with 10-ms cosine-squared rise-fall envelopes. The gated noise bursts were presented in a continuous, unfiltered, white noise floor attenuated to an overall level of 45 dB SPL. Gap onsets were parametrically delayed from the onset of the noise burst (defined as the first nonzero point on the waveform envelope) by 10, 11, 13, 15, 20, 40, 60, 110, 120, and 130 ms. Results of ANOVAs indicated that the mean gap thresholds were longer when the gaps were proximal to signal onset or offset and shorter when the gaps approached the temporal center of the noise burst. Also, the thresholds of the younger, highly experienced subjects were significantly shorter than those of the younger, inexperienced subjects, especially at placements close to signal onset or offset. The effect of replication (short-term practice) was not significant nor was the interaction between gap placement and replication. Post hoc comparisons indicated that the effect of gap placement resulted from significant decreases in gap detectability when the gap was placed close to stimulus onset and offset.  相似文献   

8.
The effect of onset interaural time differences (ITDs) on lateralization and detection was investigated for broadband pulse trains 250 ms long with a binaural fundamental frequency of 250 Hz. Within each train, ITDs of successive binaural pulse pairs alternated between two of three values (0 micros, 500 micros left-leading, and 500 micros right-leading) or were invariant. For the alternating conditions, the experimental manipulation was the choice of which of two ITDs was presented first (i.e., at stimulus onset). Lateralization, which was estimated using a broadband noise pointer with a listener adjustable interaural delay, was determined largely by the onset ITD. However, detection thresholds for the signals in left-leading or diotic continuous broadband noise were not affected by where the signals were lateralized. A quantitative analysis suggested that binaural masked thresholds for the pulse trains were well accounted for by the level and phase of harmonic components at 500 and 750 Hz. Detection thresholds obtained for brief stimuli (two binaural pulse or noise burst pairs) were also independent of which of two ITDs was presented first. The control of lateralization by onset cues appears to be based on mechanisms not essential for binaural detection.  相似文献   

9.
Vibrotactile thresholds for the detection of a 50-ms vibratory stimulus on the thenar eminence of the hand were measured in the presence of and in the absence of a 700-ms suprathreshold vibratory masking stimulus. When thresholds were measured in the presence of the masking stimulus, stimulus onset asynchrony (SOA) was varied so that backward, simultaneous, and forward masking could be measured. The amount of masking, expressed as threshold shift, was greatest when the test stimulus was presented near the onset or offset of the masking stimulus. For both backward and forward masking, the amount of masking decreased as a function of increasing stimulus onset asynchrony. Comparisons were made of the amounts of masking measured when the test and masking stimuli were both sinusoids, and when the test stimulus was a sinusoid and the masking stimulus was noise. In all conditions, the masked threshold decreased approximately 4.0 dB when SOA was increased from 100 to 650 ms with reference to the onset of the 700-ms masking stimulus. More simultaneous masking was observed when sinusoidal test stimuli were detected in the presence of noise than when they were detected in the presence of sinusoidal maskers of the same frequency. The functions were essentially identical for detection of a low-frequency (20 Hz) test stimulus mediated by a non-Pacinian channel and detection of a high-frequency (250 Hz) test stimulus mediated by the Pacinian channel.  相似文献   

10.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

11.
How quickly can a listener focus on a single tonal cue that indicates the frequency of an upcoming signal? Initial measurements were made with frequency uncertainty (signal frequency varies randomly from trial to trial) and with certainty (same frequency on all trials). Measured by a yes-no procedure, thresholds for 40- and 20-ms signals presented in continuous broadband noise at 50 dB SPL were higher in uncertainty than in certainty; the difference decreased monotonically from 5 dB at frequencies below 500 Hz to under 3 dB above about 2500 Hz. This decrease in the detrimental effect from uncertainty, which comes about with increasing signal frequency, may result from preferential attention to higher frequencies. In a second experiment, frequency again varied randomly, but each trial now began with a cue at the signal frequency. The critical variable was the delay from cue onset to signal onset. A delay of 352 ms eliminated the detrimental effect of frequency uncertainty at all frequencies. At the shortest delays of 52 and 82 ms the detrimental effect was reduced primarily at lower frequencies. Our analysis suggests that shifting focus to a cued frequency region, under optimal stimulus conditions, requires less than 52 ms.  相似文献   

12.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in five bottlenose dolphins and two white whales before and immediately after exposure to intense 1-s tones at 0.4, 3, 10, 20, and 75 kHz. The resulting levels of fatiguing stimuli necessary to induce 6 dB or larger masked temporary threshold shifts (MTTSs) were generally between 192 and 201 dB re: 1 microPa. The exceptions occurred at 75 kHz, where one dolphin exhibited an MTTS after exposure at 182 dB re: 1 microPa and the other dolphin did not show any shift after exposure to maximum levels of 193 dB re: 1 microPa, and at 0.4 kHz, where no subjects exhibited shifts at levels up to 193 dB re: 1 microPa. The shifts occurred most often at frequencies above the fatiguing stimulus. Dolphins began to exhibit altered behavior at levels of 178-193 dB re: 1 microPa and above; white whales displayed altered behavior at 180-196 dB re: 1 microPa and above. At the conclusion of the study all thresholds were at baseline values. These data confirm that cetaceans are susceptible to temporary threshold shifts (TTS) and that small levels of TTS may be fully recovered.  相似文献   

13.
"Overshoot" is a simultaneous masking phenomenon: Thresholds for short high-frequency tone bursts presented shortly after the onset of a broadband masker are raised compared to thresholds in the presence of a continuous masker. Overshoot for 2-ms bursts of a 5000-Hz test tone is described for four subjects as a function of the spectral composition and level of the masker. First, it was verified that overshoot is largely independent of masker duration. Second, overshoot was determined for a variety of 10-ms masker bursts composed of differently filtered uniform masking noise with an overall level of 60 dB SPL: unfiltered, high-pass (cutoff at 3700 Hz), low-pass (cutoff at 5700 Hz), and third-octave-band-(centered at 5000 Hz) filtered uniform masking noises presented separately or combined with different bandpass maskers (5700-16000 Hz, 5700-9500 Hz, 8400-16000 Hz) were used. Third, masked thresholds were measured for maskers composed of an upper or lower octave band adjacent to the third-octave-band masker as a function of the level of the octave band. All maskers containing components above the critical band of the test tone led to overshoot; no additional overshoot was produced by masker components below it. Typical values of overshoot were on the order of 12 dB. Overshoot saturated when masker levels were above 60 dB SPL for the upper octave-band masker. The standard neurophysiological explanation of overshoot accounts only partially for these data. Details that must be accommodated by any full explanation of overshoot are discussed.  相似文献   

14.
When very brief tonal signals are presented immediately after the onset of a gated noise masker, detectability can be 10-20 dB worse than when the signal is delayed by several hundred milliseconds, an effect known as the overshoot. It has long been known that, when an "onset" is created in an otherwise continuous, broadband masker by briefly turning it off and on again, the detectability of a brief signal presented soon after this temporal gap will decline gradually as the gap is increased from a few milliseconds to a few hundred milliseconds. In other words, the auditory system recovers to its quiescent, resting state following an adequate silent interval. Here, the broadband maskers consisted of three adjacent spectral bands--one centered on the frequency of the tonal signal, one low passed below the lower edge of the center band, and one high passed above the upper edge of the center band. The signal was a 2500-Hz tone having a total duration of 6 ms. In different blocks of trials, either all three bands, only the center band, or only the two flanking bands were temporally gapped by a duration ranging from 10-300 ms. When the center band was about 750 Hz wide (about 2.5 critical bandwidths), this differential gapping process resulted in typical recovery functions when all three bands (the entire spectrum) or when just the two flanking bands were gapped. However, when only the center band was gapped, there was no evident recovery--rather, detectability remained near the signal level required with a continuous masker, even for a gap duration of 300 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Listeners detected interaural differences of time (ITDs) or level (ILDs) carried by single 4000-Hz Gabor clicks (Gaussian-windowed tone bursts) and trains of 16 such clicks repeating at an interclick interval (ICI) of 2, 5, or 10 ms. In separate conditions, target interaural differences favored the right ear by a constant amount for all clicks (condition RR), attained their peak value at onset and diminished linearly to 0 at offset (condition R0), or grew linearly from 0 at onset to a peak value at offset (condition 0R). Threshold ITDs and ILDs were determined adaptively in separate experiments for each of these conditions and for single clicks. ITD thresholds were found to be lower for 16-click trains than for single clicks at 10-ms ICI, regardless of stimulus condition. At 2-ms ICI, thresholds in RR and R0 conditions were similar to single click thresholds at 2-ms ICI; thresholds in the 0R condition were significantly worse than for single clicks at 2-ms ICI, consistent with strong rate-dependent onset dominance in listeners' temporal weighting of ITD. ILD thresholds, in contrast, were predominantly unaffected by ICI, suggesting little or no onset dominance for ILD of high-rate stimuli.  相似文献   

16.
Psychometric functions (PFs) for forward-masked tones were obtained for conditions in which signal level was varied to estimate threshold at several masker levels (variable-signal condition), and in which masker level was varied to estimate threshold at several signal levels (variable-masker condition). The changes in PF slope across combinations of masker frequency, masker level, and signal delay were explored in three experiments. In experiment 1, a 2-kHz, 10-ms tone was masked by a 50, 70 or 90 dB SPL, 20-ms on-frequency forward masker, with signal delays of 2, 20, or 40 ms, in a variable-signal condition. PF slopes decreased in conditions where signal threshold was high. In experiments 2 and 3, the signal was a 4-kHz, 10-ms tone, and the masker was either a 4- or 2.4-kHz, 200-ms tone. In experiment 2, on-frequency maskers were presented at 30 to 90 dB SPL in 10-dB steps and off-frequency maskers were presented at 60 to 90 dB SPL in 10-dB steps, with signal delays of 0, 10, or 30 ms, in a variable-signal condition. PF slopes decreased as signal level increased, and this trend was similar for on- and off-frequency maskers. In experiment 3, variable-masker conditions with on- and off-frequency maskers and 0-ms signal delay were presented. In general, the results were consistent with the hypothesis that peripheral nonlinearity is reflected in the PF slopes. The data also indicate that masker level plays a role independent of signal level, an effect that could be accounted for by assuming greater internal noise at higher stimulus levels.  相似文献   

17.
Overshoot was measured in both ears of four subjects with normal hearing and in five subjects with permanent, sensorineural hearing loss (two with a unilateral loss). The masker was a 400-ms broadband noise presented at a spectrum level of 20, 30, or 40 dB SPL. The signal was a 10-ms sinusoid presented 1 or 195 ms after the onset of the masker. Signal frequency was 1.0 or 4.0 kHz, which placed the signal in a region of normal (1.0 kHz) or impaired (4.0 kHz) absolute sensitivity for the impaired ears. For the normal-hearing subjects, the effects of signal frequency and masker level were similar to those published previously. In particular, overshoot was larger at 4.0 than at 1.0 kHz, and overshoot at 4.0 kHz tended to decrease with increasing masker level. At 4.0 kHz, overshoot values were significantly larger in the normal ears: Maximum values ranged from about 7-26 dB in the normal ears, but were always less than 5 dB in the impaired ears. The smaller overshoot values resulted from the fact that thresholds in the short-delay condition were considerably better in the hearing-impaired subjects than in the normal-hearing subjects. At 1.0 kHz, overshoot values for the two groups of subjects more or less overlapped. The results suggest that permanent, sensorineural hearing loss disrupts the mechanisms responsible for a large overshoot effect.  相似文献   

18.
The purpose of this report is to present new data that provide a novel perspective on temporal masking, different from that found in the classical auditory literature on this topic. Specifically, measurement conditions are presented that minimize rather than maximize temporal spread of masking for a gated (200-ms) narrow-band (405-Hz-wide) noise masker logarithmically centered at 2500 Hz. Masked detection thresholds were measured for brief sinusoids in a two-interval, forced-choice (21FC) task. Detection was measured at each of 43 temporal positions within the signal observation interval for the sinusoidal signal presented either preceding, during, or following the gating of the masker, which was centered temporally within each 500-ms observation interval. Results are presented for three listeners; first, for detection of a 1900-Hz signal across a range of masker component levels (0-70 dB SPL) and, second, for masked detection as a function of signal frequency (fs = 500-5000 Hz) for a fixed masker component level (40 dB SPL). For signals presented off-frequency from the masker, and at low-to-moderate masker levels, the resulting temporal masking functions are characterized by sharp temporal edges. The sharpness of the edges is accentuated by complex patterns of temporal overshoot and undershoot, corresponding with diminished and enhanced detection, respectively, at both masker onset and offset. This information about the onset and offset timing of the gated masker is faithfully represented in the temporal masking functions over the full decade range of signal frequencies (except for fs=2500 Hz presented at the center frequency of the masker). The precise representation of the timing information is remarkable considering that the temporal envelope characteristics of the gated masker are evident in the remote masking response at least two octaves below the frequencies of the masker at a cochlear place where little or no masker activity would be expected. This general enhancement of the temporal edges of the masking response is reminiscent of spectral edge enhancement by lateral suppression/inhibition.  相似文献   

19.
Overshoot, the elevation in the threshold for a brief signal that comes on close to masker onset, was measured with signal frequency certain (same frequency on every trial) or uncertain (randomized over trials). In broadband noise, thresholds were higher 2 ms after masker onset than 200 ms later, by 9 dB with frequency certainty, by 6-7 dB with uncertainty. In narrowband noise centered on the signal frequency, thresholds at 2 ms were not elevated with certainty, but were elevated 4-5 dB with uncertainty. Thus, frequency uncertainty leads to less overshoot in broadband noise, to more overshoot in narrowband noise. Reduced overshoot in broadband noise may come about because the masker, given its many frequencies, disrupts focusing at onset as much under certainty as uncertainty. Once the initial disruption dissipates, threshold is lower with certainty so overshoot is greater. In contrast, a narrowband noise with frequencies only near the signal does not disrupt focusing when the signal frequency is known beforehand, so overshoot is absent. When frequency is uncertain, the narrowband noise serves to focus attention on the signal frequency; as this requires time, detection near noise onset is poorer than later on, so overshoot is present.  相似文献   

20.
Modulation detection thresholds (20 log ms) for a sinusoidally amplitude-modulated (SAM) noise were measured in the presence of a SAM noise masker with a modulation depth (mm) of 1.0 and a modulation frequency of 16 or 64 Hz. The signal and masker carriers were presented continuously, and the signal was modulated during one of the two 500-ms observation intervals. The masker was modulated during both observation intervals and, in some conditions, for a certain amount of time before and after signal modulation. The duration of this "fringe" ranged from 62.5 ms to continuous (masker modulated throughout the thresholds estimate). The first experiment showed that a 500-ms fringe could reduce masked thresholds by 4-6 dB, but only at low signal modulation frequencies (2-8 Hz). In the second and third experiments, it was found that the fringe had to have a duration of 500 ms and a depth of about 0.75 to be maximally effective. A final, supplementary experiment indicated that the fringe effect is not due solely to the fringe that occurs prior to the observation intervals. The results are discussed in terms of both peripheral and central auditory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号