首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic difference for chloroplast development between the normal green (CL1) and the Cy9y9 soybean mutant was observed when the plants were grown under 18W m?2 white or blue light. Under these conditions the mutant soybean accumulated less Chi b, neoxanthin, carotene and less total pigment than the CL1 genotype. Chloroplasts of the Cy9y9 line were deficient in the LHP complex relative to that of chloroplasts from the normal soybean. Specific differences were noted between chloroplasts from plants grown under blue and white light. Accumulations of a 34 kD (PSII) and a 16–17 kD (PSI) membrane polypeptide were decreased by blue light in both soybean genotypes. Blue light induced a greater accumulation of a 32 kD (PSII) polypeptide than white light. Blue light reduced granal thylakoid stacking and increased the proportion of stroma thylakoids compared to those that developed under white light. PSI electron transport activity was stimulated by the blue light treatment more than that of PSII.  相似文献   

2.
3.
Abstract— We have investigated the possibility of the involvement of a blue light fluence-rate sensing photoreceptor in the light acclimation of chloroplast components in light-grown pea seedlings. Low lightgrown seedlings were acclimated for 2 days to either 20 or 200 μmolm-2s-2 of white, blue-enriched, or broad-band red light. An increase in blue-enriched light fluence rate was more effective than that of red light in bringing about both inhibition of internode growth and the enhancement of the chlorophyll a/b ratio. Ribulose 1,5-bisphosphate carboxylase/oxygenase and cytochrome f protein levels, per unit cell, also increased more markedly (around two-fold) in response to an increase in blue light. The 23 kDa polypeptide of the oxygen-evolving complex and the light-harvesting chlorophyll d b protein of photosystem II apoprotein levels vaned under all wavelengths to a lesser extent, correlating with total protein levels or greening. These data are consistent with the hypothesis of a role for a blue photoreceptor in detecting low versus high fluence rate of light, and subsequently controlling the light acclimation responses. Nevertheless photosynthesis or other mechanisms of fluence-rate photoperception must also be involved.  相似文献   

4.
Abstract— In polarotropism of the chloronema of the fern Dryopteris filix-mas (L.) Schott and of the germ tube of the liverwort Sphaerocarpos donnellii Aust. a phytochrome action in blue and u.v. was presumed[1, 2]. In the present paper this assumption was tested by simultaneously irradiating with red and blue, and red and near u.v. Red energy is given to shift the phytochrome photoequilibrium in favour of high P fr/ P total concentrations. The data obtained by simultaneous irradiation are consistent with the predictions made under the assumption of a phytochrome involvement in the blue- and u.v.-mediated polarotropic response.  相似文献   

5.
Abstract— The use of hematoporphyrin derivative (HpD) has previously been demonstrated to be beneficial in clinical cancer therapy. This paper describes cell culture studies used to examine HpD phototherapy in Chinese hamster ovary cells (line CHO). Survival curves have been obtained for both direct HpD toxicity and HpD induced photoinactivation. Examination of HpD induced photoinactivation as a function of stage in the cell growth cycle has also been performed, as has the quantitative measurement of HpD uptake in cells (using 3H-HpD) as a function of cellular incubation time, serum concentration in the incubation medium, and cell cycle position. In the absence of light, no toxicity was observed for HpD incubation levels of up to 400 μg/m/ when incubations times were 3 h or less. Exposure of cells to light alone (> 590 nm, 4.0 mW/cm2) for 9 min was also found to be completely nontoxic. Survival curves obtained for exponentially growing cells labeled with various concentrations of HpD and subsequently illuminated with red light exhibited a threshold or shoulder region at short exposure times followed by exponential killing at longer exposure times. The cell cycle response curves for HpD induced photoinactivation of synchronized CHO cells was nearly flat, indicating no variation in sensitivity for cells treated at time periods from 6 to 15 h after mitosis. Additon of serum to the incubation medium resulted in improved plating efficiency and reproducible survival curves but decreased cellular uptake of HpD.  相似文献   

6.
PHOTOINDUCTION OF PROTOPERITHECIA IN NEUROSPORA CRASSA BY BLUE LIGHT   总被引:7,自引:0,他引:7  
Blue light induces the formation of Neurospora crassa protoperithecia.This photoinduction is completed in less than 24 h. Its threshold is about 4.2 J/m2. Red light is ineffective. The Bunsen-Roscoe law is obeyed at the fluence of 12.6 J/m2 for fluence rates from 5.25 × 10 2 to 1.05 W/m2.  相似文献   

7.
Abstract— The responses of stomata from Paphiopedilum harrisianum , Orchidaceae, to light and CO2 were studied in epidermal peels. Stomatal opening under red light was indistinguishable from that in darkness, whereas blue light promoted opening above dark levels. The ineffectiveness of red light in causing stomatal opening was confirmed in the presence of 100 μ M KCN; average apertures in both darkness and red light were 53% of those measured in the absence of the inhibitor, whereas under blue irradiation, the KCN inhibition was only 30%, with average apertures two-fold of those measured under red light or darkness. Fluence rate response curves under blue light were typical of a single photoreceptor; removal of CO2 increased aperture values without a significant light-CO2 interaction. The lack of a stomatal red light response contrasts with results obtained in species with chlorophyllous stomata in which red light consistently causes stomatal opening, and suggests that the previously reported red light responses in stomata from intact Paphiopedilum leaves resulted from indirect effects, such as depletion of intercellular CO2 by mesophyll photosynthesis. In isolation, Paphiopedilum stomata appear to rely on a blue light photosystem for their responses to light and fail to open under red light because of their lack of guard cell chloroplasts.  相似文献   

8.
Abstract— Membrane cytoskeletons were separated by use of TritonX–100 from freshly isolated red cells, fixed with glutaraldehyde and their morphology was followed by scanning electron microscopy. At 37°C and pH 6.5 cytoskeletons retained cell-like shapes for at least 2 h, but at higher pH values, they lost stability after 30 min, appearing as amorphous protein material. Irradiation in the presence of1–20 μ M protoporphyrin-IX at pH 6.5 caused crosslinking of the proteins when organized as cytoskeletons, but not when separated. Scanning electron microscopy also revealed that the cytoskeletal proteins conserved their cell-like shape even at pH values higher than 7.0. It was concluded that illumination in the presence of porphyrin causes membrane rigidity by crosslinking of the cytoskeletal proteins, and their sensitivity to crosslinking is the result of their mutual arrangement in the membrane. At concentrations higher than 100 μ M protoporphyrin-IX induced, even in the absence of light, the opposite effect, namely dissociation of the cytoskeletal proteins. The data suggest that the changes observed in this study provide an explanation for both dark and light induced injuries of red cells in porphyria disorders.  相似文献   

9.
10.
Abstract— Hypocotyl straight growth in mustard (Sinapis alba L.) responds very strongly and in precisely the same way to low fluence rate red (RL) and white light (WL). The effect of weak light can be attributed fully to light absorption by phytochrome. Only with increasing fluence rate an effect of blue light (BL) comes into play which cannot be explained by the action of phytochrome. However, this specific action of BL can be demonstrated in hypocotyl growth of mustard seedlings only up to 5 days after sowing (25°C). With older seedlings control of hypocotyl growth seems to be exerted exclusively via phytochrome. Regarding the far-red light dependent “high irradiance reaction” (FR-HIR) it was found that it plays a dominant role in growth of mustard only during a relatively short period. It tends to disappear in favor of a RL-HIR between 3 and 4 days after sowing. It is concluded that the seedling exhibits a largely endogenous temporal pattern of responsiveness to light. Phototropism of the mustard seedling can be elicited by low fluence rates (< 1 mW m?2) of unilateral BL. This same light has no effect on straight growth. It is concluded that BL-dependent phototropic growth response of a hypocotyl and the effect of BL on longitudinal growth of the hypocotyl are unrelated phenomena.  相似文献   

11.
THE EFFECT OF BLUE LIGHT ON PLANTS AND MICROORGANISMS   总被引:2,自引:0,他引:2  
  相似文献   

12.
Abstract— Chloroplasts illuminated with light absorbed predominantly by Photosystem I can mediate the photoxidation of ascorbic acid to threonic and oxalic acids. Two micromoles of oxygen are consumed for each micromole of ascorbic acid added. The kinetics of this endogenous chloroplast system closely resemble the kinetics of an artificial flavin-manganese-catalase system in which flavin is the photosensitizing dye.  相似文献   

13.
b-Type cytochromes of the higher plant plasma membrane may be reduced by irradiation with actinic blue light (light-induced absorbance change). Although this reaction has been reported to depend on the presence of an exogenous oxygen-scavenging system, significant cytochrome reduction was obtained in bean hook (Phaseolus vulgaris L. cv. “Limburgse Vroege”) plasma membranes without any addition. An endogenous oxygen-consuming reaction is apparently sufficient to achieve a proper redox balance. A blue light-mediated absorbance change with absorbance minima at 450 and 475 nm precedes cytochrome b reduction and indicates the presence of a flavoprotein in the plasma membrane fraction. Cytochrome b reduction by blue light in the absence of an oxygen scavenger is highly sensitive to flavin photosensitizers. Glucose oxidase, which has previously been used to lower the oxygen concentration in membrane samples, was demonstrated to have a photosensitizing effect. Inhibitors of flavin photochemical reactions (KI and phenylacetic acid) were highly effective in preventing cytochrome b reduction. These results indicate that the blue light-mediated reaction probably involves an endogenous plasma membrane flavoprotein as the photoreceptor. As plasma membrane NADH-dependent oxidoreductases potentially are flavoproteins these experiments raise the question whether a plasma membrane cytochrome b and a flavin-enzyme may cooperate in blue light reactions. Evidence is also discussed, suggesting the possible involvement of oxygen radicals in the blue light-induced cytochrome b reduction.  相似文献   

14.
Abstract— The efficiency of pulsed and continuous wave laser light to induce photodynamic activity in haematoporphyrin derivative (Hpd) was compared in two systems, a tissue culture assay and a transplantable mouse tumour. No difference was found.  相似文献   

15.
16.
17.
Abstract— Low doses (180–720 Jm-2) of ultraviolet light (254 nm) are known to accelerate the chlorosis of detached leaves in darkness. The development of such chlorosis is prevented by a photoreactivation treatment. However, we found that delayed light exposure or benzyladenine treatments (which were not effective in photorepair of UV-induced thymine dimers in cell DNA) were also effective in retarding the UV-accelerated chlorosis. Small drops of benzyladenine solution placed on the UV irradiated leaf formed green islands which acted as strong sinks for the accumulation of free amino acids during dark incubation. To a lesser degree, non–irradiated green tissues surrounded by irradiated yellow leaf tissue also acted as sinks for amino acid accumulation. The accelerated chlorophyll loss in UV-irradiated leaves was correlated with degradation of chloroplast ultrastructure. Visible light or benzyladenine retarded this chloroplast degradation. The accelerated senescence of UV irradiated leaf tissue, therefore, is ultrastructurally and physiologically similar to normal senescence of detached dark-incubated leaves, but progresses at a faster rate. When the lower leaf surface was irradiated with high UV doses (3600–10,800 Jm-2), the chloroplast ultrastructure of the spongy cells (except the envelope) was preserved for 3 days after dark incubation. However, the chloroplasts of the palisade cells were in a late stage of senescence. Since the spongy cells were dead (plasmalemma, tonoplast and chloroplast envelope disappeared), the maintenance of green color and ultrastructure of chloroplasts could have been due to inhibition of degrading enzymes normally associated with senescence.  相似文献   

18.
Abstract— Light-induced anthocyanin formation in Zea mays L. coleoptiles was investigated in seven different varieties of this species. Under the test conditions, four varieties showed practically no response to any waveband used (UV, continuous red and continuous far-red), two responded strongly to both UV and far-red, and one showed a strong response only to far-red. The radiation-sensitive varieties showed, however, only a very weak response to continuous red light. In those varieties sensitive to far-red light, a pretreatment with continuous red light led to a greatly enhanced response to UV or in one case the manifestation of a response to UV that was previously lacking. Further investigations in one radiation-sensitive variety (INRA) showed that the UV response was to UV-B radiation below 350 nm. The UV response, as well as the far-red and blue responses in this variety, showed fluence-rate dependency. Red light was almost ineffective and showed only a very weak fluence-rate dependency.  相似文献   

19.
Abstract— Absorbance changes due to the photoreduction of a b -type cytochrome are associated with many biological blue light-controlled processes. Evidence is presented for their causal relationship with the perception of light which induced conidia formation under conditions of starvation in Neurospora crassa mutant albino band, but not with light-induced phase shifts of conidiation bands.  相似文献   

20.
Abstract— Treatment of etiolated pea seedlings with a short exposure to red light caused a stimulation of growth (size and dry wt production) and carotenoid synthesis during the following 48 hr compared with seedlings kept entirely in darkness.The effect is nullified by a following dose of far red light and thus the phenomenon is probably phytochrome-controlled.
Similar treatment with red light one hour before continuous illumination with white light tended to reduce the lag period for chlorophyll synthesis.Again a following dose of far red light reversed this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号