首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

2.
In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2 , however, upon the introduction of low levels of discharge gas the NO2 ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3 was observed followed by the appearance of NO3 . At very high levels, NO3 species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3 and the NO3 ·HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2 and NO3 with reduced mobility values of 1.49 and 1.44 cm2V−1 s−1, respectively. No adduct was observed for RDX with CO3 although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.  相似文献   

3.
Atmospheric pressure chemical ionizations (APCIs) of morphine, codeine, and thebaine were studied in a corona discharge ion source using ion mobility spectrometry (IMS) at temperature range of 100°C–200°C. Density functional theory (DFT) at the B3LYP/6‐311++G(d,p) and M062X/6‐311++G(d,p) levels of theory were used to interpret the experimental data. It was found that in the presence of H3O+ as reactant ion (RI), ionization of morphine and codeine proceeds via both the protonation and carbocation formation, whereas thebaine participates only in protonation. Carbocation formation (fragmentation) was diminished with decrease in the temperature. At lower temperatures, proton‐bound dimers of the compounds were also formed. Ammonia was used as a dopant to produce NH4+ as an alternative RI. In the presence of NH4+, proton transfer from ammonium ion to morphine, codeine, and thebaine was the dominant mechanism of ionization. However, small amount of ammonium attachment was also observed. The theoretical calculations showed that nitrogen atom of the molecules is the most favorable proton acceptor site while the oxygen atoms participate in ammonium attachment. Furthermore, formation of the carbocations is because of the water elimination from the protonated forms of morphine and codeine.  相似文献   

4.
The introduction of mobility shift reagents (SRs) into the buffer gas of mobility spectrometers yields SR-ion clusters that decrease ion mobilities and allow the separation of overlapping ions. With a large amount of papers on the introduction of SRs in ion mobility spectrometry (IMS) few investigations explain the behavior of the adducts of reactant ions with SRs and it is not clear what type of peaks to expect which obscures the interpretation of spectra. Electrospray-ionization IMS was coupled to quadrupole mass spectrometry, and 2-butanol (B), ethyl lactate (L), and methanol were introduced as SRs into the buffer gas. The hybrid functional X3LYP/6–311++(d,p) with Gaussian 09 was used for theoretical calculations of SR-ion interaction energies. Adducts of the reactant ions with B and L presented different behaviors; even at low flow rates, L consumed all sodium, reactant ions, and water by adduction, because a) in the experimental conditions, SRs were more concentrated in the buffer gas than reactant ions, b) L’s high proton affinity and c) L’s three electron-donor oxygens, increases adduction. Therefore, chemical equilibria in the buffer gas were only between L and LnH+, LmH3O+, or LxNa+ adducts and, consequently, these sets of adducts had different mobilities. The lower mobility of LmH3O+ compared to LnH+ was explained on the base of the lower steric hindrance in LH3O+ for attachment of L molecules. The behavior of reactant ions with B was different: BnH3O+ and BnH+ overlapped because the relatively low proton affinity and the single and weaker interaction site in B allowed protons and water to be exchanged between species. Finally, L4H+, L4H3O+, B4H+ and B5H+ ions, not reported before, were seen for large SR concentrations. This study explains two different behaviors of the adducts of SRs with reactant ions using interaction energies, proton affinities, steric hindrance, and the number of locations for adduction.  相似文献   

5.
A paper spray ion source was combined with a drift tube operating at ambient pressure for mobility measurements of ions derived from pharmaceutical solutions. Paper spray ionization with solvent alone resulted in a mixture of ions convolved to a single peak with a reduced mobility of 2.19 cm2/Vs in the mobility spectrum. These were mass-identified principally as m/z 157, (MeOH)2(HCOOH)2H+ and m/z 129, (MeOH)4(H2O)H+ while pharmaceuticals with nitrogen bases formed MH+ product ions. The duration of response was governed by the volume of liquid added to the paper source and was limited by evaporation of solvent in gas at 58 °C venting the drift tube. Quantitative variation was attributed in part to morphologic changes in the tip of the paper spray source. This was associated with mass flow in the electrical discharge and not due alone to cycles of wetting and drying of the paper. Mobility spectra of chlorpromazine in urine, exhibited a single product ion peak and linear response was 30 to 500 ng with an estimated limit of detection of 1.5 ng. Ion flux could be prolonged by continuous addition of liquid and findings portend a combination of paper spray ionization IMS with paper chromatography.  相似文献   

6.
A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy‐efficient photoionization source that produce the reactant ions via soft X‐radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X‐radiation in the negative mode is more selective than the other sources. In air, adduct ions of O2 with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O2 and Cl (upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X‐ray photoionization in different gasses (air, N2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3] and [M + Cl], adduct ions such as [M + N2O2], [M + Br] and [M + I] were detected, and their gas‐phase structures and energetics are investigated by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The high‐sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx? (x = 2,3), O3 and HNO3 originating from plasma‐excited air were suggested to contribute to the formation of [TNT ? H]? (m/z 226), [TNT ? NO]? (m/z 197) and [TNT ? NO + HNO3]? (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Mass-selected reagent ion chemical ionization (CI) performed in an ion trap instrument is an efficient tool to investigate gas-phase ion reactivities and therefore to find out new and/or optimized applications for structural analysis. For instance, it was shown that the C3H6O+ . (58 mass units) molecular ion originated from vinyl methyl ether (VME) should necessarily be used alone (i.e. unit-mass selected) to produce significant diagnostic-ions for double bond location in aliphatic alkenes. Regarding the assignment of epoxides, the previous NO+/CI method was adapted for an optimal use in the trap through isolation of NO+ cation from N2O (instead of NO) plasma and production of the acylium diagnostic-ions via CID of [M − H]+ formed by NO+-induced hydride abstraction. New alkylation ion-products, e.g. RCH = O+-al , were also found to characterize isomeric epoxides as a result of either an initial electrophilic addition of the C2H5+ cation (with saturated epoxides) or a methyl-transfer from [VME]+ . (with α,β-unsaturated epoxides). The multiple tandem mass spectrometry (MSn) capabilities of the ion trap were essential to achieve reagent ion mass-selection, structural assignment of the diagnostic-ions, or to provide further selectivity. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
Sabo M  Matúška J  Matejčík S 《Talanta》2011,85(1):400-405
This study deals with O2 generation in corona discharge (CD) in point to plane geometry for single flow ion mobility spectrometry (IMS) with gas outlet located behind the ionization source. We have designed CD of special geometry in order to achieve the high O2 yield. Using this ion source we have achieved in zero air conditions that up to 74% all negative ions were O2 or O2(H2O). It has been demonstrated that the non-electronegative nitrogen positively influences the efficiency of O2 generation in O2/N2 mixtures. The reduced ion mobility of 2.27 cm2 V−1 s−1 has been measured for O2/O2(H2O) ions in zero air. Additional ions detected in zero air (less than 200 ppb CO2) using the mass spectrometric and IMS technique were, NO2, N2O2 (2.37 cm2 V−1 s−1), NO3, N2O3 and N2O3(H2O). The CO3 and CO4 ions have been detected after the introduction of 5 ppm CO2 into zero air.  相似文献   

10.
Foest  R.  Basner  R.  Schmidt  M. 《Plasmas and Polymers》1999,4(4):259-268
A technique is described, which supports the plasma mass spectrometry to distinguish possible sources of ion peaks found in the mass spectrum of the neutral gas. The proposed method is based on the measurement of the kinetic energy which the fragment ions gain during dissociative ionization by electron impact inside the ion source of the spectrometer. This approach is of special interest for applications in plasma processes such as plasma assisted deposition or etching techniques where complicated molecules are involved. The principle of the method is demonstrated and discussed for the examination of various fragment ions as CH3 +, C2H2 +, C2H3 +, C2H5 + and CH3O+ in the neutral gas spectrum of an 13.56 MHz rf discharge in an Argon-Tetraethoxysilane (TEOS) mixture.  相似文献   

11.
The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O2, HCO3, COO(COOH), NO2, NO3, and NO3(HNO3) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.  相似文献   

12.
Summary Small briquettes compressed of high-purity Os powder were bombarded by primary Ar+ ions for moderate dynamic SIMS conditions. Secondary ion mass spectra were observed for positive ions which were produced under residual gas and under O2, N2O, NO, NO2. For the different reactant gases these spectra were found rather similar, indicating that the nitrogen oxides mainly act as sources of reactive oxygen. But also some individual secondary ions containing nitrogen or NO are emitted from the target surface which, at least in the case of N2O and NO2, give some evidence of partial adsorptive fragmentation of the respective reactant gas molecules.  相似文献   

13.
The major uncertainty related to ion mobility spectrometry is the lack of knowledge about the characteristics of the ions detected. When using a radioactive atmospheric pressure ionisation source (e.g. 63Ni), from theory proton bound water clusters are expected as reactant ions. When analyte ions occur, proton transfer should lead to proton-bound monomer and dimer ions. To increase the knowledge about those ionisation processes in an ion mobility spectrometer (IMS), a ß-radiation ionisation source was coupled to a mass spectrometer (MS) and an identical one to an IMS. Exemplarily, acetone, limonene and 2- and 5-nonanone were introduced into both instruments in varying concentrations. By correlating the MS and IMS spectra, conclusions about the identities of the ions detected by IMS could be drawn. Proton-bound monomer, dimer and even trimer ions (MH+, 2MH+, 3MH+) could be observed in the MS spectra for acetone and 5-nonanone and could be assigned to the related signals detected by IMS. The oligomers could be expected from theory for increasing concentration. Limonene and 2-nonanone yielded in a variety of different ions and fragments indicating complex gas phase ion chemistry. Those findings on the obviously different behaviour of different analytes require further research focussed on the ion chemistry in IMS including the comparison of different ionisation sources.  相似文献   

14.
This paper presents the characterization of a source for soft ionization of organic molecules. This source is based on a plasma jet established at the end of a capillary dielectric barrier discharge at atmospheric pressure. He, Ne and Ar as pure gas or with different concentrations of N2 are used as buffer gas for the plasma jet. Spectroscopic emission measurements are carried out along the plasma jet in and outside the capillary. The intensity variation of N2+ lines, for example emission at 391.4 and 427.8 nm, can be associated with the protonation process which is the basis for the soft ionization. The mechanism of the N2+ production outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated. The response signal of the ions in a nitrogen atmosphere was measured with an ion mobility spectrometer (IMS).  相似文献   

15.
基于离子迁移谱的爆炸物探测仪多采用放射性电离源,发展非放射性电离源一直是该技术的研究热点。本研究基于电晕放电原理设计了一种新型负电晕放电电离源结构,结合自行研制的离子迁移谱仪,应用于痕量爆炸物的快速、高灵敏检测。单向气流模式下,对此电离源的气流、放电电压等运行参数进行了系统优化,得到最佳实验条件为:电晕放电电离源结构的电极环孔直径为3 mm,针-环距离为2 mm,放电电压为2400 V,漂气流速为1200 mL/min。在此条件下,避免了放电副产物氮氧化物和臭氧等引发的一系列复杂反应,得到了单一的反应试剂离子O-2(H2O)n。将其应用于爆炸物,如2,4,6-三硝基甲苯(TNT)、硝酸铵(AN)、硝化甘油( NG)、太安( PETN)、黑索金( RDX)等的高灵敏快速直接检测,对TNT的检测限达到200 pg/μL。结果表明,此负电晕放电电离源具有灵敏度高、结构简单、无辐射性、反应试剂离子单一等优点,在爆炸物快速高灵敏检测、公共安全保障等方面具有广阔的应用前景。  相似文献   

16.
For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.  相似文献   

17.
Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert‐butyl groups using ion mobility spectrometry–mass spectrometry (IMS‐MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M–H]. 2‐tert‐Butylphenol showed one main mobility peak in the mass‐selected mobility spectrum of the [M–H] ion measured under nitrogen atmosphere. When air was used as a nebulizer gas an oxygen addition ion was seen in the mass spectrum and, interestingly, this new species [M–H+O] had a shorter drift time than the lighter [M–H] ion. Other phenolic compounds primarily produced two IMS peaks in the mass‐selected mobility spectra measured using the [M–H] ion. It was also observed that two isomeric compounds, 2,4‐di‐tert‐butylphenol and 2,6‐di‐tert‐butylphenol, could be separated with IMS. In addition, mobilities of various characteristic ions of 2,4,6‐trinitrotoluene were measured, since this compound was previously used as a mobility standard. The possibility of using phenolic compounds as mobility standards is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We report a miniaturized excitation source for soft ionization of molecules based on a dielectric barrier discharge. An atmospheric plasma is established at the end of a 500 μm diameter capillary using He as buffer gas. The plasma jet which comes out of the capillary is dependent on the gas flow rate. The mechanism of the production of N2+ outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated by spatially resolved spectroscopic measurements throughout the plasma. Possible application of such miniaturized plasmas is the ionization of gaseous compounds under atmospheric pressure as an alternative to traditional APCI (atmospheric pressure chemical ionization). The miniaturized plasma was applied as ionization source for ion mobility spectrometry where the common sources are radioactive, thus limiting the place of installation. First measurements of gaseous compounds with such a plasma ion mobility spectrometer with promising results showed detection limits comparable or even better than those obtained using common radioactive ionization sources.  相似文献   

19.
This paper reports the first investigation of electron capture ion mobility spectrometry as a detection method for capillary gas chromatography. In previous work with negative ion mobility detection after gas chromatography, the principal reactant ion species were O2? or hydrated O2? due to the presence of oxygen in the drift gas. These molecular reactant ions have a mobility similar to chloride and bromide ions, which are the principal product ions formed by most halogenated organics via dissociative ion-molecule reactions. Oxygenated reactant ions thus interfere with the selective detection of chloride and bromide product ions. A recently described ion mobility detector design efficiently eliminated ambient impurities, including oxygen, from infiltrating the ionization region of the detector; consequently, in the negative mode of operation, the ionization species with N2 drift gas were thermalized electrons. Thermalized electrons have a high mobility and their drift time occupies a region of the ion mobility spectrum not occupied by chloride, bromide, or other product ions. The result was improved selectivity for halogenated organics which ionize by dissociative electron capture. This was demonstrated by the selective detection of 4,4′-dibromobiphenyl from the components of a polychlorinated biphenyl mixture (Aroclor 1248).  相似文献   

20.
The reactant gas pressure dependence of secondary ion emission from surfaces of polycrystalline Cr, Fe, Co, Mo, Rh, W, Re, and Ir under the action of N2O, NO and NO2 was observed by means of moderate dynamic SIMS. The mass spectra for constant reactant gas pressure indicate the existence of two different groups of transition metals showing either dissociative or partial molecular adsorption behavior. This is confirmed at least above some suitable reactant gas pressure. Besides some special details (Fe/NO; Co/NO) several of the relative secondary ion intensities vs. reactant gas pressure exhibit similar curvature as for O2, thus indicating the NOx gases to be modified sources of oxygen. At higher pressures molecular secondary ions with and without metal atoms come to be appreciable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号