首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
Solvent extraction of U(VI) with di-isodecyl phosphoric acid (DIDPA)/dodecane from nitric acid medium has been investigated for a wide range of experimental conditions. Effect of various parameters including nitric acid concentration, DIDPA concentration, temperature, stripping agents, and other impurities like rear earths, transition metal ion, boron, aluminum ion on U(VI) extraction has been studied. The species extracted in the organic phase is found to be UO2(NO3)(HA2)·H2A2 at lower acidity (<3.0 M HNO3). Increase in temperature lead to the decrease in extraction with the enthalpy change by ∆H = −16.27 kJ/mol. Enhancement in extraction of U(VI) from nitric acid medium was observed with the mixture of DIDPA and tri butyl phosphate (TBP). The stripping of U(VI) from organic phase (DIDPA–U(VI)/dodecane) with various reagents followed the order: 4 M H2SO4 > 5% (NH4)2CO3 > 8 M HCl > 8 M HNO3 > Water. High separation factors between U(VI) and impurities suggested that the use of DIDPA for purification of uranium from multi elements bearing solution.  相似文献   

2.
《中国化学快报》2023,34(11):108440
Uranium and molybdenum are important strategic elements. The production of 99Mo and the hydrometallurgical process of uranium ore face difficult problems of separation of uranium and molybdenum. In this study, the four phenanthroline diamide ligands were synthesized, and extraction and stripping experiments were performed under different conditions to evaluate the potential application of these ligands for separation of U(VI) over Mo(VI). With the growth of alkyl chain, the solubility of ligands could be greatly improved, and the separation effect of U(VI) over Mo(VI) gradually increased. The SFU/Mo were around 10,000 at 4 mol/L HNO3. Three stripping agents were tested with the stripping efficiency of Na2CO3 (5%) > H2O > HNO3 (0.01 mol/L). The stripping percentages of the three stripping agents were all close to unity, indicating that the ligands had the potential to be recycled. The chemical stoichiometry of U(VI) complexes with ligands was evaluated as 1:1 using electrospray ionization mass spectrometry, ultraviolet visible spectroscopy and single-crystal X-ray diffraction. The consistency between theoretical calculation and experimental results further explains the coordination mechanism.  相似文献   

3.
The extraction order of Th(IV), U(VI) and Mo(VI) based on pH0.5 values is Mo(VI)>U(VI)>Th(IV). Quantitative extraction has been observed for U(VI) by mixture of 10% (v/v) LIX 84 and 0.1M dibenzoylmethane at pH 4.2 and by mixture of 10% LIX 84 and 0.05M HTTA in the pH range 5.5–7.3 and for Mo(VI) by 10% LIX 84 from chloride media at pH 1.5. The order of extraction of Mo(VI) from 1N acid solutions is HCl>H2SO4>HNO3>HClO4 and extraction decreases very rapidly with increase in the concentration of HCl as compared to that from H2SO4, HNO3 and HClO4 acid solutions. The diluents C6H6, CCl4 and CHCl2 are found to be superior ton-butyl alcohol and isoamyl alcohol for extraction of Mo(VI). Influence of concentration of different anions on the extraction of U(VI) and Mo(VI) has been studied. Very little extraction has been observed in case of Th(IV) by LIX 84 or its mixtures with other chelating extractants or neutral donors.  相似文献   

4.
Extraction of U(VI) from HNO3, HCl and HClO4 media using cyanex-272 (bis[2,4,4 trimethyl pentyl] phosphinic acid)/n-dodecane has been carried out. In the case of HNO3 and HClO4 media, the distribution ratio (D) value first decreases and then increases, whereas from HCl medium it first decreases and then remains constant with increase in H+ ion concentration. At lower acidities, U(VI) was extracted as UO2(HA2)2 by an ion exchange mechanism, whereas at higher acidities as UO2(NO3)2 .2(H2A2) following a solvation mechanism. The D for U(VI) by cyanex-272, PC-88A and DEHPA at low acidities follows the order cyanex-272 > PC-88A > DEHPA. Also, cyanex-272 was found to extract U(VI) more efficiently than TBP at 2M HNO3. The effect of diluents on the extraction of U(VI) by cyanex-272 followed the order cyclohexane > n-dodecane > CCl4 > benzene. The loading of U(VI) into cyanex-272/n-dodecane from 2M HNO3 has shown that at saturation point, cyanex-272 was 78% loaded. No third phase was observed at the saturation level. The stripping of U(VI) from the loaded organic phase was not possible with water, it was poor with acetic acid and sodium acetate but quantitative with oxalic acid, ammonium carbonate and sodium carbonate.  相似文献   

5.
Cross-linked hydrogel matrices immobilized with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HA), were prepared to investigate their application in the recovery of radionuclide from acidic waste solutions. Gamma-radiation was used to produce HA immobilized polyvinyl alcohol (PVA) hydrogels (HA-gel). The hydrogels with different characteristics such as: degree of cross-linking (by varying radiation dose) and quantity of extractant immobilized (by starting with aqueous PVA solution containing different amounts of HA), were synthesised. These HA-gels were investigated for solid-liquid phase extraction of U(VI), Pu(IV), Am(III) and some fission products, under various experimental conditions. The concentration of HNO3 in the aqueous phase was found to play an important role in the extraction of these radionuclei. Extraction of U(VI) was more favourable at lower concentration of HNO3 (∼0.001 to 0.5M), while at higher concentrations (∼0.5 to 3M HNO3), more than 90% of Pu(IV) present in the aqueous phase, could be extracted by the HA-gel. The extraction of Am(III) was also found predominant only at lower acidities (at pH∼2 and above). Under optimized conditions, maximum metal loading capacities obtained were 19±0.8 mg, 8±0.4 mg and 11±0.5 mg per gram of swollen HA-gel, for U(VI), Pu(IV) and Am(III), respectively. Under the experimental conditions, extractions of Cs(I) and Sr(II) were observed to be negligible. No leaching out of HA from the HA-gel particles was noted even after its repetitive use for the studied ten cycles of extraction and stripping experiments, as evident from its unchanged extraction efficiency.  相似文献   

6.
The order of extraction of Mo(VI) from 1M acid solutions by 5% (v/v) LIX 622 (HL) in benzene is HCl>HNO3>HClO4>H2SO4, and extraction decreases with increasing concentration of HCl and H2SO4, and increases slightly with increasing concentration of HNO3 and HClO4. The extracted species is shown to be MoO2L2 as established by IR data of organic extracts and the extracted species in the solid form. Extraction is almost quantitative at and above 10% LIX 622, and is found to be independent of [Mo(VI)] in the range of 10–4 to 10–3 M. The diluents CCl4, CHCl3 and C6H6 are found to be superior to solvents of high dielectric constant for extraction of Mo(VI). Extraction of uranium(VI) by 10% (v/v) LIX 622 in benzene was found to increase with increasing equilibrium pH (3.0 to 6.0), and becomes quantitative at pH 5.9. Tributyl phosphate acts as a modifier up to 2% (v/v). Thorium(IV) is almost not extracted by LIX 622 or its mixture. Separation of Mo(VI) and U(VI) is feasible.  相似文献   

7.
Extraction behavior of 1 × 10−2–0.1 M U(VI) from aqueous phases containing 0.86 M Th(IV) at 4 M HNO3 in 1.1 M tributyl phosphate (TBP) and 1.1 M N,N-dihexyl octanamide (DHOA) solutions in different diluents viz. n-dodecane, 10% 1-octanol + n-dodecane, and decahydronaphthalene (decalin) was studied. Third-phase formation was observed in both the extractants using n-dodecane as diluent. There was a gradual decrease in Th(IV) concentration in the third-phase (heavy organic phase, HOP) with increased aqueous U(VI) concentration [0.71 M (no U(VI))–0.61 M (0.1 M U(VI)) for TBP; 0.27 M (no U(VI))–0.22 M (0.1 M U(VI)) for DHOA]. The HOP volume in case of DHOA was ~2.2 times of that of TBP. Uranium concentration in HOP increased with its initial concentration in the aqueous phase [from 1.8 × 10−2 M (0.01 M U(VI))–0.162 M (0.1 M U(VI)) for TBP; from 1.4 × 10−2 M (0.01 M U(VI))–0.14 M (0.1 M U(VI)) for DHOA] suggesting that Th(IV) was being replaced by U(VI). An empirical correlation was developed for predicting the concentrations of uranium and thorium in HOP for both the extractants. No third-phase appeared during the extraction of uranium and thorium from the aqueous phases employing 10% 1-octanol + n-dodecane, or decalin as diluents, and therefore, were better choices as diluent for alleviating the third-phase formation during the reprocessing of spent thorium based fuels, and for the recovery of thorium from high-level waste solutions.  相似文献   

8.
The sulphate leach liquor obtained from the sulphuric acid leaching process of Egyptian monazite was treated using solvent extraction to recover U(VI) by LIX63. The influence of various basic variables such as pH, concentration of LIX63, temperature, different stripping agent, phase ratio and diluents was examined. Using 10% LIX63 with the aqueous solution at equilibrium pH 5.5 and a phase ratio A/O?=?1/1, a four-stage McCabe-Thiele plot was constructed, which showed 85.57% of U(VI) extraction. The thermodynamic data showed that the extraction process is exothermic with enthalpy change ΔH?=???43.866?kJ/mol, the stripping of U(VI) was quantitative using 4?M HNO3. The stable complex UO2(HSO4)Rorg formed during extraction which supports the cation exchange mechanism was confirmed by FTIR spectral analysis. Uranium cake was finally obtained from the strip solution by the addition of hydrogen peroxide and ammonium hydroxide as precipitating agents, and a workable flowsheet was then formulated.  相似文献   

9.
Extraction behavior of U(VI) and Th(IV) from nitric acid medium is investigated using organo-phosphorous extractant, tri(butoxyethyl) phosphate in n-paraffin at room temperature (27 ± 1 °C). The effect of diluents, nitric acid concentration as well as extractant concentration on extraction of U(VI) and Th(IV) are evaluated. Extraction of U(VI) and Th(IV) from nitric acid medium proceeds via solvation mechanism. Slope analysis technique showed the formation of neutral complexes of the type of UO2(NO3)2·2TBEP and Th(NO3)4·3TBEP with U(VI) and Th(IV) respectively in the organic phase. The FTIR data showed shifting of P=O stretching frequency from 1,282 to 1,217 cm−1 indicating the strong complexation of P=O group with UO2 2+ ions in the organic phase. Effect of stripping agents, other metal ions and their separation with respect to U(VI) extraction has also been investigated.  相似文献   

10.
Facilitated transport of silver(I) ions in acidic medium, across a supported liquid membrane (SLM) by using triethanolamine (TEA) as carrier, dissolved in cyclohexanone, has been investigated. The parameters studied are HNO3 concentration variation in the feed, pH of the feed solution, carrier concentration in the membrane phase, silver(I) ions concentration in the feed phase and KCN concentration in the stripping phase. Increase in H+ concentration by increasing HNO3 concentration from 0.5 to 1 M results into an increase in silver ions flux but a decrease in flux has been found beyond 1 M HNO3 concentration in the feed, providing a maximum flux of 3.21 × 10−7 mol/m2 s at 1 M HNO3. Increase in TEA concentration inside the membrane enhances flux with its maximum value at 2.25 M TEA. Further increase in the concentration of TEA leads to a decreased rate of transport due to the increase in viscosity of membrane liquid. The optimum conditions for Ag(I) ions transport are 1 M HNO3 (feed), 2.25 M TEA (membrane) and 1.5 M KCN in the stripping phase. It has been observed that Ag(I) flux across the membrane tends to increase with increase in Ag(I) ions concentration in the feed phase. Applying the studied conditions to silver plating waste solutions, Ag ions have been removed up to 99% in a time interval of 5 h.  相似文献   

11.
The extraction behaviour of HNO3 and Np(IV) from aqueous nitrate solutions with some aliphatic alcohols and ketones using hexane, carbon tetrachloride, benzene and chloroform as diluents was studied. The acid concentration in the aqueous phase varied from 0.25 to 10 M and that of the extractant in the organic phase varied from 0.5 M to the undiluted fraction. In the alcohol systems, solutions of the same alcohol in the diluents CCl4 and CHCl3 showed similar capacity for acid extraction, and also in the same diluents, solutions of diisopropyl and diisobutyl alcohol showed similar capacity for extraction. Extraction of Np(IV) with the different ketones and alcohols used follow the same pattern as HNO3.  相似文献   

12.
The extraction of Tc(VII) by the mixture of tri-n-butyl phosphate (TBP) and 2-nitrophenyl octyl ether (NPOE) has been studied. 0.2M NPOE-TBP can extract Tc(VII) effectively from 1M HNO3 and 1M NaOH solutions with distribution ratios of 57.1 and 12.3, respectively. The distribution ratio of Tc(VII) decreases with increasing (>0.5M) HNO3 concentration but increases with the increase of NaOH concentration. A pH 9 NaOH solution has proven to be suitable for Tc(VII) stripping. A simple extraction-stripping cycle can remove Tc(VII) from a sodium hydroxide solution. A more sophisticated extraction process is proposed to remove Tc(VII) from nitric acid solution because the co-extracted HNO3 prevents the direct stripping of Tc(VII) by NaOH solution of pH 9.  相似文献   

13.
Liquid-liquid extraction of uranium (VI) from aqueous phosphoric acid solution by triisodecylamine (Alamine 310), tri-n-butyl phosphate (TBP), di-n-pentyl sulfoxide (DPSO) and their mixtures in benzene in the range 1–10M aqueous H3PO4 shows that extraction is maximum (80%) in the higher acidity range 6–8 M. Extraction of this metal ion by bis(2,4,4-trimethylpentyl)phosphinicacid (Cyanex 301) and its mixtures studied in the range 0.2–1.0M aqueous H3PO4 is far from being quantitative. Antagonism in extraction by mixtures of extractants is observed in most of the cases. Extraction of molybdenum(VI) under identical conditions shows that it is quantitative in the lower acidity range upto 2M H3PO4. Separation of uranium(VI) from molybdenum(VI) is feasible by Alamine 310, TBP and DPSO, the order of efficiency being TBP>DPSO>Alamine 310.  相似文献   

14.
Summary The extraction of protactinium with Aliquat 336 (methyl-tri-caprylyl ammonium chloride) in toluene, cyclohexane and chloroform from HCl, HNO3, H2SO4, HClO4, HF and mixed HCl-HF media was investigated by radioactive tracer technique. Distribution ratios of protactinium between the aqueous solution and the organic phase were determined as a function of shaking time, concentrations of acid in aqueous solution phase, extractant concentration and type of diluents in the organic phase. Aliquat 336 can almost quantitatively extract protactinium from strong HCl solution. At the same time, small amounts of HF in HCl solutions have a strong effect on Pa distribution.</p> </p>  相似文献   

15.
Liquid-liquid extraction of Th(IV) and U(VI) has been investigated by commercial extractant PC-88A in toluene. The optimum conditions for extraction of these metals have been established by studying the various parameters like acid concentration/pH, reagent concentration, diluents and shaking time. The extraction of Th(IV) was found to be quantitative with 0.1–1.0M HNO3 acid and in the pH range 1.0–4.0 while U(VI) was completely extracted in the pH range 1.0–3.5 with 2.5·10–2M and 2.·10–2M PC-88A in toluene, respectively. The probable extracted species have been ascertained by log D-log C plot as ThR4·4HR and UO2R2·2HR, respectively. The method permits separation of Th(IV) and U(VI) from associated metals with a recovery of 99.0%.  相似文献   

16.
The extraction of Nd(III) using binary mixtures of Cyanex 272 (HA), Cyanex 921/Cyanex 923 (B) in kerosene from nitric acid medium has been investigated. The effect of aqueous phase acidity, extractant concentration, nitrate ion concentration and diluents on the extraction of Nd(III) has been studied. On the basis of slope analysis results, extracted species are proposed as Nd(NO3)A2·3HA and Nd(NO3)2·A·3HA·B using Cyanex 272 and its mixture with Cyanex 921/Cyanex 923, respectively. With the mixture of 0.1 M Cyanex 272 and 0.1 M Cyanex 923 in kerosene, the extraction of 0.001 M Nd(III) from 0.001 M HNO3 solution was found to be 83.3 % whereas it was 73.3 % when 0.1 M Cyanex 921 used as synergist under same experimental conditions. The stripping data of Nd(III) from the loaded organic phase containing 0.1 M Cyanex 272 and 0.1 M Cyanex 921/Cyanex 923 with different acids indicated sulphuric acid to be the best stripping agent.  相似文献   

17.
The extraction of chromium(VI) from aqueous hydrochloric, nitric and sulfuric acid solutions by diphenyl-2-pyridylmethane(DPPM) dissolved in chloroform has been studied. Chromium(VI) is quantitatively extracted from hydrochloric acid solutions in the range 0.1–1M. With increasing acid concentration, the extraction of chromium diminishes and in concentrated acid solutions practically all the chromium remains in the aqueous phase. The quantitative back-extraction of chromium from the organic phase is possible with HCl or HNO3 at concentrations higher than 5M through the use of reducing agents. The composition of the extracted chromium(VI) species was studied in solution. The complexes (DPPMH)+HCrO 4 and (DPPMH)2Cr2O 7 are extracted for tracer and macro amounts of chromium(VI) respectively. The data have been utilized for the separation of chromium(VI) from base metal ions.  相似文献   

18.
U(VI) was quantitatively extracted from 1·10−3M HNO3 using 5·10−3M Cyanex 302 in xylene and was stripped from organic phase with 5M HCl. The optimum extraction conditions have been evaluated by studying parameters like acidity, effect of diluents, extractant concentration and period of equilibration. Based on this data, the separations of uranium from binary and complex metal mixtures and its recovery from uranmicrolite tailings (leachate) were successfully tested. Uranium can be determined with a relative standard deviation of 0.4%.  相似文献   

19.
The extraction behavior of U(VI) and Th(IV) with tri-isoamyl phosphate–kerosene (TiAP–KO) from nitric acid medium was investigated in detail using the batch extraction method as a function of aqueous-phase acidity, TiAP concentration and temperature, then the thermodynamic parameters associated with the extraction were derived by the second-law method. It could be noted that the distribution ratios of U(VI) or Th(IV) increased with increasing HNO3 concentration until 6 or 5 M from 0.1 M. However, a good separation factor (D U(VI)/D Th(IV)) of 88.25 was achieved at 6 M HNO3, and the stripping of U(VI) from TiAP–KO with deionized water or diluted nitric acid was easier than that of Th(IV). The probable extracted species were deduced by log D-log c plot at different temperatures as UO2(NO3)2·(TiAP)(1–2) and Th(NO3)4·(TiAP)(2–3), respectively. Additionally, △H, △G and △S for the extraction of U(VI) and Th(IV) revealed that the extraction of U(VI) by TiAP was an exothermic process and was counteracted by entropy change, while the extraction of Th(IV) was an endothermic process and was driven by entropy change.  相似文献   

20.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号