首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we introduce flexible models for capacitated discrete location problems. We describe three different points of view of a location problem in a logistics system. Different mathematical programming formulations are presented, illustrated by examples and compared using a battery of test problems. Extensive computational tests are done showing the potentials and limits of this kind of resolution approach.  相似文献   

2.
In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. The Ordered Median Location problem is a generalization of most of the classical locations problems like p-median or p-center problems. The OGCLP model provides a unifying structure for the standard location models and allows us to develop objectives sensitive to both relative and absolute customer-to-facility distances. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities is already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.  相似文献   

3.
We consider a discrete facility location problem where the difference between the maximum and minimum number of customers allocated to every plant has to be balanced. Two different Integer Programming formulations are built, and several families of valid inequalities for these formulations are developed. Preprocessing techniques which allow to reduce the size of the largest formulation, based on the upper bound obtained by means of an ad hoc heuristic solution, are also incorporated. Since the number of available valid inequalities for this formulation is exponential, a branch-and-cut algorithm is designed where the most violated inequalities are separated at every node of the branching tree. Both formulations, with and without the improvements, are tested in a computational framework in order to discriminate the most promising solution methods. Difficult instances with up to 50 potential plants and 100 customers, and largest easy instances, can be solved in one CPU hour.  相似文献   

4.
The classical discrete location problem is extended here, where the candidate facilities are subject to failure. The unreliable location problem is defined by introducing the probability that a facility may become inactive. The formulation and the solution procedure have been motivated by an application to model and solve a large size problem for locating base stations in a cellular communication network. We formulate the unreliable discrete location problems as 0–1 integer programming models, and implement an enhanced dual-based solution method to determine locations of these facilities to minimize the sum of fixed cost and expected operating (transportation) cost. Computational tests of some well-known problems have shown that the heuristic is efficient and effective for solving these unreliable location problems.  相似文献   

5.
Typical formulations of thep-median problem on a network assume discrete nodal demands. However, for many problems, demands are better represented by continuous functions along the links, in addition to nodal demands. For such problems, optimal server locations need not occur at nodes, so that algorithms of the kind developed for the discrete demand case can not be used. In this paper we show how the 2-median of a tree network with continuous link demands can be found using an algorithm based on sequential location and allocation. We show that the algorithm will converge to a local minimum and then present a procedure for finding the global minimum solution.  相似文献   

6.
We develop eight different mixed-integer convex programming reformulations of 0-1 hyperbolic programs. We obtain analytical results on the relative tightness of these formulations and propose a branch and bound algorithm for 0-1 hyperbolic programs. The main feature of the algorithm is that it reformulates the problem at every node of the search tree. We demonstrate that this algorithm has a superior convergence behavior than directly solving the relaxation derived at the root node. The algorithm is used to solve a discrete p-choice facility location problem for locating ten restaurants in the city of Edmonton.The research was supported in part by NSF awards DMII 95-02722 and BES 98-73586 to NVS.  相似文献   

7.
This paper addresses multi-depot location arc routing problems with vehicle capacity constraints. Two mixed integer programming models are presented for single and multi-depot problems. Relaxing these formulations leads to other integer programming models whose solutions provide good lower bounds for the total cost. A powerful insertion heuristic has been developed for solving the underlying capacitated arc routing problem. This heuristic is used together with a novel location–allocation heuristic to solve the problem within a simulated annealing framework. Extensive computational results demonstrate that the proposed algorithm can find high quality solutions. We also show that the potential cost saving resulting from adding location decisions to the capacitated arc routing problem is significant.  相似文献   

8.
One way of solving multiple objective mathematical programming problems is finding discrete representations of the efficient set. A modified goal of finding good discrete representations of the efficient set would contribute to the practicality of vector maximization algorithms. We define coverage, uniformity and cardinality as the three attributes of quality of discrete representations and introduce a framework that includes these attributes in which discrete representations can be evaluated, compared to each other, and judged satisfactory or unsatisfactory by a Decision Maker. We provide simple mathematical programming formulations that can be used to compute the coverage error of a given discrete representation. Our formulations are practically implementable when the problem under study is a multiobjective linear programming problem. We believe that the interactive algorithms along with the vector maximization methods can make use of our framework and its tools. Received April 7, 1998 / Revised version received March 1999?Published online November 9, 1999  相似文献   

9.
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.  相似文献   

10.
In this paper, we consider a class of parabolic partial differential equations with a time delay. The first model equation is the mixed problems for scalar generalized diffusion equation with a delay, whereas the second model equation is a delayed reaction‐diffusion equation. Both of these models have inherent complex nature because of which their analytical solutions are hardly obtainable, and therefore, one has to seek numerical treatments for their approximate solutions. To this end, we develop a fitted Galerkin spectral method for solving this problem. We derive optimal error estimates based on weak formulations for the fully discrete problems. Some numerical experiments are also provided at the end. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We consider discrete competitive facility location problems in this paper. Such problems could be viewed as a search of nodes in a network, composed of candidate and customer demand nodes, which connections correspond to attractiveness between customers and facilities located at the candidate nodes. The number of customers is usually very large. For some models of customer behavior exact solution approaches could be used. However, for other models and/or when the size of problem is too high to solve exactly, heuristic algorithms may be used. The solution of discrete competitive facility location problems using genetic algorithms is considered in this paper. The new strategies for dynamic adjustment of some parameters of genetic algorithm, such as probabilities for the crossover and mutation operations are proposed and applied to improve the canonical genetic algorithm. The algorithm is also specially adopted to solve discrete competitive facility location problems by proposing a strategy for selection of the most promising values of the variables in the mutation procedure. The developed genetic algorithm is demonstrated by solving instances of competitive facility location problems for an entering firm.  相似文献   

12.
本文给出Steklov特征值问题基于Legendre-Galerkin逼近的一种有效的谱方法.首先利用Legendre多项式构造了一组适当的基函数使得离散变分形式中的矩阵是稀疏的,然后推导了2维及3维情形下离散变分形式基于张量积的矩阵形式,由此可以快速地计算出离散的特征值和特征向量.文章还给出了误差分析和数值试验,数值结果表明本文提出的方法是稳定和有效的.  相似文献   

13.
We address the problem of finding location equilibria of a location-price game where firms first select their locations and then set delivered prices in order to maximize their profits. Assuming that firms set the equilibrium prices in the second stage, the game is reduced to a location game for which a global minimizer of the social cost is a location equilibrium if demand is completely inelastic and marginal production cost is constant. The problem of social cost minimization is studied for both a network and a discrete location space. A node optimality property when the location space is a network is shown and an Integer Linear Programming (ILP) formulation is obtained to minimize the social cost. It is also shown that multiple location equilibria can be found if marginal delivered costs are equal for all competitors. Two ILP formulations are given to select one of such equilibria that take into account the aggregated profit and an equity criterion, respectively. An illustrative example with real data is solved and some conclusions are presented.  相似文献   

14.
The underlying time framework used is one of the major differences in the basic structure of mathematical programming formulations used for production scheduling problems. The models are either based on continuous or discrete time representations. In the literature there is no general agreement on which is better or more suitable for different types of production or business environments. In this paper we study a large real-world scheduling problem from a pharmaceutical company. The problem is at least NP-hard and cannot be solved with standard solution methods. We therefore decompose the problem into two parts and compare discrete and continuous time representations for solving the individual parts. Our results show pros and cons of each model. The continuous formulation can be used to solve larger test cases and it is also more accurate for the problem under consideration.  相似文献   

15.
We introduce a model of a preferential attachment based random graph which extends the family of models in which condensation phenomena can occur. Each vertex has an associated uniform random variable which we call its location. Our model evolves in discrete time by selecting r vertices from the graph with replacement, with probabilities proportional to their degrees plus a constant α. A new vertex joins the network and attaches to one of these vertices according to a given probability associated to the ranking of their locations. We give conditions for the occurrence of condensation, showing the existence of phase transitions in α below which condensation occurs. The condensation in our model differs from that in preferential attachment models with fitness in that the condensation can occur at a random location, that it can be due to a persistent hub, and that there can be more than one point of condensation.  相似文献   

16.
The leader—follower location problem consists of determining an optimal strategy for two competing firms which make decisions sequentially. The leader optimisation problem is to minimise the maximum market share of the follower. The objective of the follower problem is to maximise its market share. We describe linear programming formulations for both problems and analyse the use of these formulations to solve the problems. We also propose an exact procedure based on an elimination process in a candidate list.  相似文献   

17.
Following a brief taxonomy of the broad field of facility location modeling, this paper provides an annotated bibliography of recent papers in two branches of discrete location theory and modeling. In particular, we review papers related to (1) the median and plant location models and (2) to center and covering models. We show how the contributions of the papers we review are embedded in the field. A summary and outlook conclude the paper.  相似文献   

18.
As is often the case in healthcare provision, public services may offer facilities at a hierarchy of levels in different locations, ranging from basic to specialised levels of care. In addition to efficiency objectives, with public services there is the concern of equity of provision when locating new facilities. We present, as a tool-kit for decision makers, a range of discrete hierarchical location models with bicriteria efficiency/equity objectives. These models are for use in location of facilities within hierarchical systems where a fair but efficient hierarchical service is sought. The hierarchical models have as efficiency criteria both p-median and maximal-covering types. These components are combined in a novel manner with appropriate equity objectives to give decision makers a range of choices of scenarios. We illustrate use of the models in a healthcare setting.  相似文献   

19.
In this paper we consider formulations and solution approaches for multiple allocation hub location problems. We present a number of results, which enable us to develop preprocessing procedures and tightening constraints for existing mixed integer linear programming formulations. We employ flow cover constraints for capacitated problems to improve computation times. We present the results of our computational experience, which show that all of these steps can effectively reduce the computational effort required to obtain optimal solutions.  相似文献   

20.
In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号