首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of temperature during cellulose compression has been studied using mechanical testing, particle size analysis, density and pressure–volume–temperature (PVT) measurements, crystallinity index, scanning electron microscope photographs and water sorption isotherms. Commercial cellulose powder samples with different crystallinity levels were compacted at high pressure (177 MPa) for 10 min at two different temperatures: 25 and 160 °C. Three point bending test results for compressed samples are discussed. When pressure was applied directly to powders at room temperature, the cellulose sample with the highest level of crystallinity showed an increase in its crystallinity index of about 5 %, while this was about 22 % for the sample with the lowest level. These increases were even higher at 160 °C attaining 8 and 33 % respectively. Using density measurements, a densification phase related to this crystallinization was observed, and the PVT diagrams from different cellulose samples showed that this was associated with high temperatures. Water sorption isotherms were made on cellulose samples before and after compression. They showed a diminution of cellulose sorption capacity after compression at 160 °C, revealing the effect of temperature on high-pressure cellulose compression, reducing specific surface area. Events of this nature suggest a sintering mechanism, when temperature is associated with high pressure during cellulose compression.  相似文献   

2.
The literature related to differences between chemical cellulose pulps produced by different pulping processes has been reviewed. Kraft pulps tend to be stronger, particularly in tear strength, while sulfite pulps hydrate and beat more readily. Organosolv pulps tend to mirror the properties of sulfite more than those of kraft pulps. A number of theories have been offered to explain the different properties of the chemical pulps; however, none has been universally accepted. It may be that acidic processes develop weak points in the fibers which are magnified in tear strength losses since, at a constant tensile strength, a 10% loss in fiber strength can lead to a 25–30% loss in tear strength. The effects of acidic pulping may also be magnified in greater fiber breakage and damage in the subsequent refining stages. However, strength improvements for inferior pulps can be realized through post-chemical treatments. Caustic treatments appear to give the greatest improvements, presumably due to increases in acidic group content which results in enhanced swelling properties, and possible subtle reorientation of cell wall polymers. The strength of hornified, recycled fibers can also be enhanced with such treatments, although simple beating will restore considerable strength, but at the expense of drainage rates. It is clear that the processes are complex and involve both the chemistry and physics of the fibers and how these attributes combine to affect the subsequent beating of the fibers for bonding and strength development.  相似文献   

3.
Water-swollen cellulose films prepared from LiOH/urea solution were uniaxially drawn to investigate the effect of orientation on their supramolecular structure and properties. Their structures and properties were investigated with X-ray diffraction, atomic force microscopy and tensile testing. The results revealed that the drawing process led to substantial reorientation of the cellulose molecular chains, resulting in a significant improvement of their mechanical properties and water-resistance. With an increase of the drawn ratios from 1 to 1.22, the tensile strength of the films at dry and wet states increased from 89 to 213 MPa and 2.9 to 33.9 MPa, respectively. Furthermore, the drawn cellulose films also exhibited good biocompatibility with the capability of supporting cell adhesion and proliferation.  相似文献   

4.
Lithium-nickel-manganese oxides (Li1+x(Ni1/2Mn1/2)1−xO2, x=0 and 0.2), having different cationic distributions and an oxidation state of Ni varying from 2+ to 3+, were formed under a high-pressure (3 GPa). The structure and cationic distribution in these oxides were examined by powder X-ray diffraction, infrared (IR) and electron paramagnetic resonance (EPR) in X-band (9.23 GHz) and at higher frequencies (95 and 285 GHz). Under a high pressure, a solid-state reaction between NiMnO3 and Li2O yields LiNi0.5Mn0.5O2 with a disordered rock-salt type structure. The paramagnetic ions stabilized in this oxide are mainly Ni2+ and Mn4+ together with Mn3+ (about 10%). The replacement of Li2O by Li2O2 permits increasing the oxidation state of Ni ions in lithium-nickel-manganese oxides. The higher oxidation state of Ni ions favours the stabilization of the layered modification, where the Ni-to-Mn ratio is preserved: Li(Li0.2Ni0.4Mn0.4)O2. The paramagnetic ions stabilized in the layered oxide are mainly Ni3+ and Mn4+ ions. The disordered and ordered phases display different intercalation properties in respect of lithium. The changes in local Ni,Mn-environment during the electrochemical reaction are discussed on the basis of EPR and IR spectroscopy.  相似文献   

5.
Research has intensified in recent years on organic solvent pulping processes to supplement or replace conventional pulping processes. One of the main problems with organosolv pulps is the inferior tear strength compared to kraft pulps. An investigation of the properties of two acidic (acetic acid organosolv and acid sulfite) and one basic white spruce pulp (kraft) was carried out to determine factors affecting differences in tear strength. Properties evaluated were lignin and sugar content, mineral composition, ESCA oxygen-to-carbon ratios, acid-base characteristics, water wettabilities, degree of polymerization and crystallinity of cellulose, fiber length and coarseness, and physical properties of the various pulps. Differences in tear strength have been attributed to degradation and changes in the cellulose structure, the hemicellulose-lignin matrix in which the degree of polymerization of hemicelluloses plays the most important role in low yield pulps, and finally, the bonding capacity of the fiber surfaces.  相似文献   

6.
Three different pre-acid-hydrolysis treatments were used to treat coconut husk fibers for preparing cellulose nanowhiskers by sulfuric acid hydrolysis. The effects of those treatments on the morphology and properties of the nanowhiskers were investigated. FTIR was employed to evaluate the change of chemical composition due to different pre-acid-hydrolysis treatments. AFM images showed that there was no significant difference of size of nanowhiskers obtained by different pre-acid-hydrolysis treatment, 2–3 nm of average thickness. The thermal decomposition of nanowhiskers shifted to higher temperatures with removal of hemicellulose and lignin.  相似文献   

7.
Various models of cellulose supramolecular organization, such as the models of crystalline micelles, defective crystals, amorphous stacks, folded fibrils, fringed fibrils, crystalline fibrils with the amorphous surface, and various variants of the model of amorphous–crystalline fibrils with straightened chains have been critically analyzed. Specific features, advantages, and drawbacks of various models have been examined. The main methods for the structural studies of cellulose have been discussed. A model of mesomorphous- crystalline fibrils with straightened chains and the paracrystalline surface layer has been advanced, and it has been shown that this model may be used to forecast various properties of cellulose.  相似文献   

8.
The structure of cellulose is investigated using a recently derived force field. Published experimental data is taken only as a starting point for purely theoretical investigations. The reliability of the method is validated by calculating physical properties of the obtained geometries. In the course of the investigations, the geometries of cellulose Iα, cellulose Iβ and cellulose II are derived. For these geometries the Young's-modulus is calculated. The structure of cellulose in aqueous solution is investigated, using cellohexaose (a hexamer of β-D -glucose) as a fragment of a cellulose chain. Here, the diffusion coefficient is calculated.  相似文献   

9.
10.
Cotton cellulose fibers were modified in inert plasma. Surface morphology of the modified fibers was studied by SEM and changes in the surface composition by XPS and FTIR. Standard goniometry was used for determination of contact angle as a function of modified fiber aging. Absorptivity of modified fibers was determined by gravimetry and fiber width in physiological solution, simulating body liquids, by confocal microscopy. Antibacterial effect of pristine and plasma treated samples was examined by following growth of Escherichia coli. Plasma treatment led to surface ablation, changes in surface morphology and fiber width. Surface of the plasma modified fibers was oxidized and their water absorptivity was reduced. The plasma modification did not affect E. coli growth substantially.  相似文献   

11.
A green method—joint mechanical grinding and high pressure homogenization—was used to defibrillate paper pulp into nanofibrils. The prepared cellulose nanofibrils (CNF) were then blended with PVA in an aqueous system to prepare transparent composite film. The size and morphology of the nanofibrils and their composites were observed, and the structure and properties were characterized. The results showed that CNFs are beneficial to improve the crystallinity, mechanical strength, Young’s modulus, T g and thermal stability of the PVA matrix because of their high aspect ratio, crystallinity and good compatibility. Therefore, nano cellulosic fibrils were proven to be an effective reinforcing filler for the hydrophilic polymer matrix. Moreover, the green fabrication approaches will be helpful to build up biodegradable nanocomposites with wide applications in functional environmentally friendly materials.  相似文献   

12.
13C CPMAS NMR investigations of cellulose polymorphs in different pulps   总被引:2,自引:0,他引:2  
In order to obtain information about the crystallinity and polymorphs of cellulose, and the occurrence of hemicelluloses in pulp fibers, wood cellulose, bacterial cellulose, cotton linters, viscose, and celluloses in different pulps were investigated by solid state 13C CPMAS NMR spectroscopy. A mixed softwood kraft pulp and a dissolving-grade pulp were treated under strongly alkaline and acidic conditions and the effect on cellulose crystallinity was studied. The presence of different crystalline polymorphs of cellulose and the amounts of hemicelluloses are considered.  相似文献   

13.
The interactions with water and the physical properties of microfibrillated celluloses (MFCs) and associated films generated from wood pulps of different yields (containing extractives, lignin, and hemicelluloses) have been investigated. MFCs were produced by combining mechanical refining and a high pressure treatment using a homogenizer. The produced MFCs were characterized by morphology analysis, water retention, hard-to-remove water content, and specific surface area. Regardless of chemical composition, processing to convert macrofibrils to microfibrils resulted in a decrease in water adsorption and water vapor transmission rate, both important properties for food packaging applications. After homogenization, MFCs with high lignin content had a higher water vapor transmission rate, even with a higher initial contact angle, hypothesized to be due to large hydrophobic pores in the film. A small amount of paraffin wax, less than 10%, reduced the WVTR to a similar value as low density polyethylene. Hard-to-remove water content correlated with specific surface area up to approximately 50 m2/g, but not with water retention value. The drying rate of the MFCs increased with the specific surface area. Hornified fibers from recycled paper also have the potential to be used as starting materials for MFC production as the physical and optical properties of the films were similar to the films from virgin fibers. In summary, the utilization of lignin containing MFCs resulted in unique properties and should reduce MFC production costs by reducing wood, chemical, and energy requirements.  相似文献   

14.
Russian Chemical Bulletin - The study is concerned with structural rearrangements in the crystals of heterospin complexes Cu(hfac)2 with nitroxide radicals LR (hfac is hexafluoroacetylacetonate, LR...  相似文献   

15.
Vacuum ultra-violet-excimer lamp effect on cellulose fiber was studied to examine the effect on surface chemistry of cellulose. We focused on composition of a superficial layer of cellulose, which was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Along with the surface composition, surface morphology was studied by scanning electron microscopy. The vacuum ultra-violet-excimer exposure in various atmospheres can be advantageously utilized as cellulose pre-treatment with tailored properties. N2 atmosphere is suitable for cleaning of cellulose surface, NH3 atmosphere for functionalization with amine and amide groups, and air atmosphere for increase or decrease of wettability, depending on exposure time.  相似文献   

16.
An enzymatic treatment with cellulases fromTrichoderma viride was investigated in its effect on the pore structure of different types of bead cellulose. One objective of this study was to establish a suitable procedure for combined enzymatic treatment and solvent exchange that would restore the original pore structure which the beads had before drying without causing major losses in mechanical stability. Another aim was to further increase the accessible pore space and internal surface area for separation of large molecular weight compounds with regard to Chromatographic applications. Finally, an attempt was made to extend the findings for unsubstituted beads to the derivatives carboxymethyl (CM) and diethylaminoethyl (DEAE) cellulose beads. The enzymatically treated samples were characterized by microscopic methods and porosity measurements such as mercury porosimetry, nitrogen sorption and size exclusion chromatography. It was found that under controlled conditions the low-porosity surface layer of dried beads could be removed making the internal pore space accessible without reducing the resistance to deformation of the beads. Additionally, a shift in pore size distribution towards larger pores was observed. Supplementary swelling treatments in solvents of high swelling power could substantially restore the former porosity of the dried beads but did not enhance the accessibility to the cellulases to a considerable extent. Internal pore volume and surface area of the derivatives were dramatically increased in the case of DEAE upon enzymatic hydrolysis, however, at the expense of mechanical stability, whereas CM was found to be less affected.  相似文献   

17.
Using X-ray phase analysis, IR spectroscopy, and derivatography we have shown that when molybdenum(IV) undergoes mechanochemical treatment in a planetary mill, along with an increase in the specific surface area changes also occur in the chemical composition and structure. The Mo−O−Mo bonds of the oxide lattice and the terminal Mo=O bonds are weakened and lengthened, evidence for which comes from IR spectroscopy data. Partial reduction of the molybdenum ions occurs with formation of the phase MoO2.8 in water, water-benzene, and water-alcohol medium. In the presence of ethanol, the Magnéli phase χ-Mo8O23 can be formed for a certain energy load according to a crystallographic shift mechanism. The presence of reduced phase and the increase in specific surface area promote an increase in the activity of the oxide in oxidation of benzene. Selective oxidation of benzene to maleic anhydride is favored by an increase in the relative content of the (020) crystallographic face. L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospekt Nauki, Kiev 252039, Ukraine. Translated from Teoreticheskaya i éksperimental'naya Khimiya, Vol. 35, No. 4, pp. 257–261, July–August, 1999.  相似文献   

18.
Samples of VO2 were prepared at 50 kbar and 800°C in a belt apparatus. The products were then annealed in evacuated silica tubes at 800°C for 1 week. The X-ray diffraction patterns of these samples, before and after annealing, were compared with polycrystalline and ground single crystals of VO2. In addition, the resistivity above and below 67°C was measured. The effect of high pressure on the metal-semiconducting transition is discussed in terms of the relative positions of the t6 and π1 bands.  相似文献   

19.
Pluronics modified liposomes have been prepared and shown to enhance stability of liposomes in our previous reports. In this study, we intended to evaluate the effect of dynamic high pressure microfluidization (DHPM) on the structure and stability of pluronic F127 modified liposomes. The results indicated that the particle size of F127 modified liposomes was decreased from 1180.6?nm to 73.5?nm after DHPM treatment. Meanwhile, the morphology was changed from irregularly multilamellar vesicle to spherically unilamellar structure. Structural characteristics were examined by fourier transformed infrared spectrometer, differential scanning calorimetry and X-ray powder diffraction. The subtle difference of structure might be attributed to the incorporation of PPO chains into the bilayer caused by DHPM treatment. Stability studies indicated that DHPM treatment could enhance the storage and membrane stability of F127 modified liposomes. This study may provide more insight to understand the effect of preparation method on the structure and stability of F127 modified liposomes.  相似文献   

20.
The molecular-disperse distribution of tetraphenylporphine in solution-cast cellulose triacetate and diacetate films was established by X-ray structural analysis. It was shown that the low crystallizability during heat treatment is a characteristic feature of cellulose acetates membranes containing tetraphenylporphine. This could be due to fact that the porphyrin molecules are located in the intermolecular spaces of the amorphous phase of the polymer, thereby hindering crystallite growth. Evidence for the formation of a complex of tetraphenylporphine and cellulose acetates, where the additive resides in the crystal lattice of the polymer and alters its parameters, was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号