首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate time-varying linear differential algebraic equations with partial derivatives. We introduce concept of insolubility index as the least possible order of the differential operator which transforms the initial system into a structural form with separated the “algebraic” and “differential” subsystems. The approach does not assume the existence of differential indexes with respect to independent variables.  相似文献   

2.
A boundary value problem is examined for a linear differential algebraic system of partial differential equations with a special structure of the associate matrix pencil. The use of an appropriate transformation makes it possible to split such a system into a system of ordinary differential equations, a hyperbolic system, and a linear algebraic system. A three-layer finite difference method is applied to solve the resulting problem numerically. A theorem on the stability and the convergence of this method is proved, and some numerical results are presented.  相似文献   

3.
4.
In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent non-negative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge–Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We analyze these conditions for some common Runge–Kutta and multistep methods and observe that for index-1 systems and stiffly accurate Runge–Kutta methods, positivity is conditionally preserved under similar conditions as for ODEs. For higher index problems, however, none of the common methods is suitable.  相似文献   

5.
Summary The aim of this note is to extend some results on least-squares collocation methods and to prove the convergence of a least-squares collocation method applied to linear differential-algebraic equations. Some numerical examples are presented.  相似文献   

6.
We consider a system of linear ordinary differential equations in which the coefficient matrix multiplying the derivative of the unknown vector function is identically singular. For systems with constant and variable coefficients, we obtain nonresonance criteria (criteria for bounded-input bounded-output stability). For single-input control systems, we consider the problem of synthesizing a nonresonant system in the stationary and nonstationary cases. An arbitrarily high unsolvability index is admitted. The analysis is carried out under assumptions providing the existence of a so-called “equivalent form” with separated “algebraic” and “differential” components.  相似文献   

7.
8.
An exact finite-difference scheme for a system of two linear differential equations with constant coefficients, (d/dt)x(t)=Ax(t)(d/dt)x(t)=Ax(t), is proposed. The scheme is different from what was proposed by Mickens [Nonstandard Finite Difference Models of Differential Equations, World Scientific, New Jersey, 1994, p. 147], in which the derivatives of the two equations are formed differently. Our exact scheme is in the form of (1/φ(h))(xk+1-xk)=A[θxk+1+(1-θ)xk](1/φ(h))(xk+1-xk)=A[θxk+1+(1-θ)xk]; both derivatives are in the same form of (xk+1-xk)/φ(h)(xk+1-xk)/φ(h).  相似文献   

9.
BIT Numerical Mathematics - Syntax-directed translation is utilized to generate the finite-difference patterns corresponding to linear partial differential equations (PDE's); these patterns can...  相似文献   

10.
This paper deals with linear partial differential-algebraic equations (PDAEs) which have a hyperbolic part. If the spatial differential operator satisfies a Gårding-type inequality in a suitable function space setting, a perturbation index can be defined. Theoretical and practical examples are considered.  相似文献   

11.
We study general nonsquare linear systems of differential-algebraic systems of arbitrary order. We analyze the classical procedure of turning the system into a first order system and demonstrate that this approach may lead to different solvability results and smoothness requirements. We present several examples that demonstrate this phenomenon and then derive existence and uniqueness results for differential-algebraic systems of arbitrary order and index. We use these results to identify exactly those variables for which the order reduction to first order does not lead to extra smoothness requirements and demonstrate the effects of this new formulation with a numerical example.Dedicated to Richard S. Varga on the occasion of his 77th birthday.  相似文献   

12.
A method is proposed for solving linear differential-algebraic systems of equations supplemented with nonlocal conditions specified by the Stieltjes integral. The method is based on a series of successive transformations of the original system. The result is either a normal system of differential equations or a system of algebraic equations. In the first case, the use of the supplementary nonlocal condition is realized through the introduction of auxiliary boundary conditions of a standard type.  相似文献   

13.
This paper is addressed to some questions concerning the exponential stability and its robustness measure for linear time-varying differential-algebraic systems of index 1. First, the Bohl exponent theory that is well known for ordinary differential equations is extended to differential-algebraic equations. Then, it is investigated that how the Bohl exponent and the stability radii with respect to dynamic perturbations for a differential-algebraic system depend on the system data. The paper can be considered as a continued and complementary part to a recent paper on stability radii for time-varying differential-algebraic equations [N.H. Du, V.H. Linh, Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations, J. Differential Equations 230 (2006) 579-599].  相似文献   

14.
We obtain some conditions of solvability in Sobolev spaces for the systems of linear partial differential equations and deduce the corresponding formulas for solutions to these systems. The solutions are given as the sum of the series whose terms are the iterations of some pseudodifferential operators constructed explicitly.  相似文献   

15.
An implicit difference scheme is considered for approximating the initial-boundary value problem for a linear differential-algebraic system of partial differential equations with variable matrix coefficients of special structure. The conditional and asymptotic stability of the difference scheme with respect to the initial and boundary conditions and the right-hand side is proved.  相似文献   

16.
Many numerical methods used to solve ordinary differential equations or differential-algebraic equations can be written as general linear methods. The purpose of this paper is to extend the known convergence results for Runge-Kutta and linear multistep methods to a large class of new promising numerical schemes. The theoretical results are illustrated by some numerical experiments.  相似文献   

17.
The mathematical model of electric circuits yields systems of differential-algebraic equations (DAEs). In radio frequency applications, a multivariate model of oscillatory signals transforms the DAEs into a system of multirate partial differential-algebraic equations (MPDAEs). Considering quasiperiodic signals, an approach based on a method of characteristics yields efficient numerical schemes for the MPDAEs in time domain. If additionally digital signal structures occur, an adaptive grid is required to achieve the efficiency of the technique. We present a strategy applying a wavelet transformation to construct a mesh for resolving steep gradients in respective signals. Consequently, we employ finite difference methods to determine an approximative solution of characteristic systems in according grid points. Numerical simulations demonstrate the performance of the adaptive grid generation, where radio frequency signals with digital structures are resolved.  相似文献   

18.
We consider an application of the least squares method to numerical solving a linear system of ordinary differential equations (ODEs) with an identically singular or rectangular matrix multiplying the highest derivative of the desired vector-function. The behavior of gradient methods for minimizing the squared residual in Sobolev spaces and some other issues are discussed. Results of some numerical experiments are given.  相似文献   

19.
20.
In certain special classes of linear normal systems of partial differential equations, sufficient conditions for the trivial solution of the Cauchy problem to be stable can be phrased in terms of the coefficients. The determination of such classes is based on a modified method of majorants, combined with the use of n-dimensional hypercomplex numbers with associative-commutative multiplication.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 4, pp. 480–489, April, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号