首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cross-sections for collisional charge transfer between singly charged free clusters M n + (M = Li, Na; n=1...50) and atomic targets A (cesium, potassium) have been measured as a function of collisional relative velocity in laboratory energy range 1–10 keV. For each cluster size, the experimental values of the charge transfer cross-section are fitted with an universal parametric curve with two independent parameters and vm, the maximum cross-section and the corresponding velocity. For small size clusters (), the characteristic parameters show strong variations with the number of atoms in the cluster. Abrupt dips observed for n=10 and n=22 are attributed to electronic properties. Charge transfer patterns observed for various collisional systems present similarities, which appear more sensitive to cluster quantum size effects than to collision energy defects. In their whole, the and vm parameters show differences in both their size evolution and their absolute values discussed in term of projectile and target electronic structures. Received 13 April 2000 and Received in final form 29 June 2000  相似文献   

3.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

4.
5.
We have studied experimentally the collisional charge transfer between a neutral atom and a multicharged metal-atom cluster. The charge transfer cross section measured for Na 31 + + + Cs is in the range of 400 ?2. The time-of-flight mass analysis of the singly charged collision products demonstrates that an energy of about 0.5 eV is deposited in the cluster fragment during the charge transfer collision. This effect can be interpreted as a charge transfer to an excited state of the metal cluster. The measured cross section for Na 31 + + + Cs is larger than the one for Na 31 + + Cs collisions. This difference between these two systems is due to the existence, for the first one, of a Coulombic repulsion term in the collision output channel. Received 24 October 2000  相似文献   

6.
In an experimental study, the multi-ionisation of metallic clusters (Nan) has been analysed in collisions with light ions in low charge states (H+, He+, He2+, O3+) at collision velocities below 1 a.u. Cluster ions are produced in charge states up to 5+. The average charge of the nano-particles is found to increase linearly with the variation of projectile velocity and the square of the effective projectile charge, well in agreement with the electronic stopping power of the bulk material. A fraction of 50% to 30% of the total projectile energy loss (decreasing with velocity) is transferred into vibrational modes in good agreement with recent theoretical predictions. Received 8 November 2000 and Received in final form 26 January 2001  相似文献   

7.
An analysis of integral cross sections for slow electron collisions with neutral sodium clusters and nanoparticles reveals that, in addition to an effective negative ion formation channel, there exists a strong inelastic threshold-type process which appears above a collision energy of 1-1.3 eV. We show that it can be plausibly associated with the onset of direct electron-induced cluster fragmentation. This result highlights the importance of understanding the dynamics of electron-vibrational energy transfer in nanoclusters, including the relative probability of direct vs. statistical energy transfer. Received 24 November 2000  相似文献   

8.
Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters. Received 29 November 2000  相似文献   

9.
The decay pathway competition between monomer and dimer evaporation of photoexcited cluster ions Au + n, n = 2-27, has been investigated by photodissociation of size-selected gold clusters stored in a Penning trap. For n > 6 the two decay pathways are distinguished by their experimental signature in time-resolved measurements of the dissociation. For the smaller clusters, simple fragment spectra were used. As in the case of the other copper-group elements, even-numbered gold cluster ions decay exclusively by monomer evaporation, irrespective of their size. For small odd-size gold clusters, dimer evaporation is a competitive alternative, and the smaller the odd-sized clusters, the more likely they decay by dimer evaporation. In this respect, Au + 9 shows an anomalous behavior, as it is less likely to evaporate dimers than its two odd-numbered neighbors, Au + 7 and Au + 11. This nonamer anomaly is typical for copper-group cluster ions M + 9 (M = Cu, Ag, Au) and a similar behavior is found in the anionic heptamers M - 7. It is discussed in terms of the well-known electronic shell closing at n e = 8 atomic valence electrons. Received 2 November 2000  相似文献   

10.
Projectile fragmentation of 238U in a lead target was investigated at a bombarding energy of 750 A MeV. Isotopic production cross sections of about 250 different projectile fragments in the element range Z= 30–53 were measured with the FRagment Separator (FRS). The magnetic selection and the kinematical analysis of the measured isotopes allowed to disentangle fission and fragmentation residues. The mass loss of these residues indicates a violent collision where a large amount of energy is dissipated. The position of the fragmentation corridor defined by the measured residues was used to determine an effective proton-evaporation barrier. Received: 3 October 1997 / Revised version: 27 February 1998  相似文献   

11.
We have carried out measurements on metastable fragmentation of mass selected argon cluster ions which are produced by electron impact ionization of a neutral argon cluster beam. From the shape of the fragment ion peaks (MIKE scan technique) one can deduce information about the distribution of kinetic energy that is released in the decay reaction. In this study, for Ar 5 + to Ar 15 +, it is Gaussian and thus we can calculate from the peak width the mean kinetic energy release 〈KER〉 of the corresponding decay reactions. Using finite heat bath theory we calculate from these data the binding energies of the decaying cluster ions. Received 20 November 2000  相似文献   

12.
The growth of small tellurium clusters in helium and the influence of a metal impurity (dysprosium atoms) on the cluster size distribution are investigated in a double laser vaporization source. A model describing the role of the carrier gas as collision partner is presented, emphasizing the crucial influence of the gas pressure on cluster formation. Changes in cluster reactivity due to dysprosium addition are discussed in terms of ionic structures Dy 3 +(Te N)3 - containing a radical electron. Received 28 November 2000  相似文献   

13.
This contribution addresses the inelastic interaction of positively charged molecular cluster ions with a solid surface at kinetic energies up to 30 eV/molecule. We report experimental results on the scattering of mass-selected, protonated methanol cluster cations (CH3OH)nH+, n = 4-32, off a diamond-coated silicon surface. In particular we provide fragment size distributions of methanol cluster ions following their impact on the target, as well as surface-induced neutralization probabilities of methanol cluster ions as a function of the size and the kinetic energy of the parent clusters. Received 30 November 2000  相似文献   

14.
Infrared (IR) photodissociation spectra of the aniline+-Arn cations, An + - Ar n (n = 1, 2), are analyzed in the vicinity of the N-H stretch fundamentals. The complexes are produced in an electron impact (EI) ion source which produces predominantly the most stable cluster isomers. Two isomers of An+-Ar are identified by their characteristic N-H stretch frequencies: the planar proton-bound global minimum, in which the Ar ligand forms a nearly linear H-bond to the amino group, and the less stable π-bound local minimum, in which the Ar atom is attached to the π-electron system of the aromatic ring. This result is the first unambiguous detection of the most stable H-bound An+-Ar dimer. All previous spectroscopic studies of An+-Ar employed resonance enhanced multiphoton ionization (REMPI) of neutral An-Ar and identified only the less stable π-bound cation due to restrictions arising from the Franck-Condon principle. The EI-IR spectrum of An+-Ar2 shows that the most stable structure of this trimer features two equivalent H-bonds (C2v symmetry). The interpretation of the experimental data is supported by quantum chemical calculations. The ab initio potential of An+-Ar calculated at the UMP2/6-311G(2df, 2pd) level features H-bound global minima ( D e = 513 cm-1) and π-bound local minima ( D e = 454 cm-1), with a barrier of V b ≈ 140 cm-1 for isomerization from the π-bound toward the H-bound minimum. Received 4 February 2002 Published online 13 September 2002  相似文献   

15.
We have studied the atomic structure and the electronic properties of Ban clusters by the ab initio molecular dynamics method. We find that a structural transition to the bulk-like structure begins at Ba9 cluster, and the structures of the clusters are transferred to be icosahedral-like around n = 13. The relatively high stability for Ba4, Ba10 and Ba13 clusters are observed. Received 1st December 2000  相似文献   

16.
Nam(H2O)n Clusters ( n = 1...200, m = 1...50) are formed in a recently build pick-up arrangement. Preformed water clusters traverse a sodium oven, where sodium atoms are picked up. At low sodium vapour pressure ( < 1×10-4 mbar) pure Na(H2O)n clusters are observed in the mass spectra. At high sodium vapour pressure ( > 1×10-3 mbar) the water cluster pick up more than 50 Na atoms and reaction products Na(NaOH)n ( n = 2, 4...50) dominate the mass spectra. The even number of NaOH units in the products indicate that also in a finite cluster the reaction occurs in pairs as in the macroscopic reaction. Received 4 December 2000  相似文献   

17.
18.
The electric form factor of the neutron GEn has been determined in double polarized exclusive 3 He(e,e'n) scattering in quasi–elastic kinematics by measuring asymmetries A , A of the cross section with respect to helicity reversal of the electron, with the nuclear spin being oriented perpendicular to the momentum transfer q in case of A and parallel in case of A. The experiment was performed at the 855 MeV c. w. microtron MAMI at Mainz. The degree of polarization of the electron beam and of the gaseous 3 He target were each about 50%. Scattered electrons and neutrons were detected in coincidence by detector arrays covering large solid angles. Quasi–elastic scattering events were reconstructed from the measured electron scattering angles ϑe, φe and the neutron momentum vector p n in the plane wave impulse approximation. We obtain the result <G En>(0.27 < Q2c2/GeV2 < 0.5)= 0.0334 ± 0.0033stat± 0.0028syst which is averaged over the indicated range of Q 2, the squared momentum transfer. This G En value is significantly smaller than measured from the D(e,e'n) reaction under similar kinematical conditions. To what extent final state interactions in 3He quench the G En result is subject of calculations currently in progress elsewhere. Received: 29 April 1999  相似文献   

19.
The stability against fragmentation and possible relaxation of the lowest excited states of the Na5F4 cluster (representative of cubic non stoechiometric clusters with an excess sodium atom, also called sodium-tail) is investigated by means of one-electron pseudopotential calculations with particular reference to photoabsorption processes from the ground state. Whereas the equilibrium configuration of the ground state has C3v symmetry, the doubly degenerate 12E excited state is affected by a conical intersection and a Jahn-Teller effect associated with the rotation of the sodium tail around the C3-axis. This yields a “Mexican hat" topology for the lowest sheet with three equivalent Cs minima. Alternatively the 22A1 state has a minimum retaining the C3v symmetry. The dissociation paths of the cluster along the C3-axis into respectively Na4F4 + Na and Na4F3 + NaF are also investigated. Among the former paths, the excited states are found adiabatically stable with respect to the products. However in the A1 symmetry, fragmentation into NaF exhibits an interesting avoided crossing between configurations correlated respectively with Na4F3 + + NaF- and Na4F3 + NaF. Such interaction, similar to the well-known charge exchange processes in elementary molecules might induce non adiabatic predissociation of the 22A1 state. This mechanism is invoked to explain the differences between R2PI and depletion spectra, correlated with the dissociation or relaxation of the excited states. Received 24 March 2000 and Received in final form 11 July 2000  相似文献   

20.
The present study focuses on electronic correlation effects on magnetic energy, the spin-spin correlation function of an octahedron cluster in the (3↑, 3 ↓) electronic configuration threaded by a magnetic field. Some other spin configurations are also discussed and various field directions are considered. An accurate diagonalisation technique has been used to solve the Hubbard Hamiltonian. A result is analysed on a linear energy stabilisation at low magnetic flux. Moreover, two types of antiferromagnetic transition versus the flux occurring for a correlation term larger than a critical one have been observed, i.e. the likelihood of a charge excitation before the antiferromagnetic transition. Finally, a comparison between the results obtained from the exact diagonalisation and the Gutzwiller method has been carried out, leading to a suggested modification of the Gutzwiller approach in order to improve it. Received 23 June 1999 and Received in final form 28 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号