首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper, we continue the study of domination and total domination in cubic graphs. It is known [Henning M.A., Southey J., A note on graphs with disjoint dominating and total dominating sets, Ars Combin., 2008, 89, 159–162] that every cubic graph has a dominating set and a total dominating set which are disjoint. In this paper we show that every connected cubic graph on nvertices has a total dominating set whose complement contains a dominating set such that the cardinality of the total dominating set is at most (n+2)/2, and this bound is essentially best possible.  相似文献   

2.
A set X of vertices of G is an independent dominating set if no two vertices of X are adjacent and each vertex not in X is adjacent to at least one vertex in X. Independent dominating sets of G are cliques of the complement G of G and conversely.This work is concerned with the existence of disjoint independent dominating sets in a graph G. A new parameter, the maximum number of disjoint independent dominating sets in G, is studied and the class of graphs whose vertex sets partition into independent dominating sets is investigated.  相似文献   

3.
《Discrete Applied Mathematics》2004,134(1-3):239-261
An asteroidal triple (AT) is a set of vertices such that each pair of vertices is joined by a path that avoids the neighborhood of the third. Every AT-free graph contains a dominating pair, a pair of vertices such that for every path between them, every vertex of the graph is within distance one of the path. We say that a graph is a hereditary dominating pair (HDP) graph if each of its connected induced subgraphs contains a dominating pair. In this paper we introduce the notion of frame HDP graphs in order to capture the structure of HDP graphs that contain asteroidal triples. We also determine the maximum diameter of frame HDP graphs.  相似文献   

4.
A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study graphs whose vertex set can be partitioned into two total dominating sets. In particular, we develop several sufficient conditions for a graph to have a vertex partition into two total dominating sets. We also show that with the exception of the cycle on five vertices, every selfcomplementary graph with minimum degree at least two has such a partition.  相似文献   

5.
Locating and total dominating sets in trees   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G=(V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.  相似文献   

6.
For a fixed positive integer k, a k-tuple dominating set of a graph G=(V,E) is a subset D?V such that every vertex in V is dominated by at least k vertex in D. The k-tuple domination number γ ×k (G) is the minimum size of a k-tuple dominating set of G. The special case when k=1 is the usual domination. The case when k=2 was called double domination or 2-tuple domination. A 2-tuple dominating set D 2 is said to be minimal if there does not exist any D′?D 2 such that D′ is a 2-tuple dominating set of G. A 2-tuple dominating set D 2, denoted by γ ×2(G), is said to be minimum, if it is minimal as well as it gives 2-tuple domination number. In this paper, we present an efficient algorithm to find a minimum 2-tuple dominating set on permutation graphs with n vertices which runs in O(n 2) time.  相似文献   

7.
A set S of vertices in a graph G is said to be an edge-dominating set if every edge in G is incident with a vertex in S. A cycle in G is said to be a dominating cycle if its vertex set is an edge-dominating set. Nash-Williams [Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics, Academic Press, London, 1971, pp. 157-183] has proved that every longest cycle in a 2-connected graph of order n and minimum degree at least is a dominating cycle. In this paper, we prove that for a prescribed positive integer k, under the same minimum degree condition, if n is sufficiently large and if we take k disjoint cycles so that they contain as many vertices as possible, then these cycles form an edge-dominating set. Nash-Williams’ Theorem corresponds to the case of k=1 of this result.  相似文献   

8.
A dominating setD of a graph G is a subset of V(G) such that for every vertex vV(G), either vD or there exists a vertex uD that is adjacent to v in G. Dominating sets of small cardinality are of interest. A connected dominating setC of a graph G is a dominating set of G such that the subgraph induced by the vertices of C in G is connected. A weakly-connected dominating setW of a graph G is a dominating set of G such that the subgraph consisting of V(G) and all edges incident with vertices in W is connected. In this paper we present several algorithms for finding small connected dominating sets and small weakly-connected dominating sets of regular graphs. We analyse the average-case performance of these heuristics on random regular graphs using differential equations, thus giving upper bounds on the size of a smallest connected dominating set and the size of a smallest weakly-connected dominating set of random regular graphs.  相似文献   

9.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.  相似文献   

10.
A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D.A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D,and the set V(G)\D is independent.The 2-domination(total outer-independent domination,respectively)number of a graph G is the minimum cardinality of a 2-dominating(total outer-independent dominating,respectively)set of G.We investigate the ratio between2-domination and total outer-independent domination numbers of trees.  相似文献   

11.
A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a dominating set such that the subgraph induced by the dominating set contains a perfect matching. In this paper, we show that no minimum degree is sufficient to guarantee the existence of a disjoint dominating set and a paired-dominating set. However, we prove that the vertex set of every cubic graph can be partitioned into a dominating set and a paired-dominating set.  相似文献   

12.
An edge dominating set of a graph is a set of edgesD such that every edge not inD is adjacent to an edge inD. An edge domatic partition of a graph G =(V, E) is a collection of pairwise disjoint edge dominating sets of G whose union isE. The maximum size of an edge domatic partition of G is called the edge domatic number of G. In this paper we study the edge domatic numbers of completen-partite graphs. In particular, we give exact values for the edge domatic numbers of complete 3-partite graphs and balanced complete n-partite graphs with oddn.  相似文献   

13.
A dominating cycle for a graph G = (V, E) is a subset C of V which has the following properties: (i) the subgraph of G induced by C has a Hamiltonian cycle, and (ii) every vertex of V is adjacent to some vertex of C. In this paper, we develop an O(n2) algorithm for finding a minimum cardinality dominating cycle in a permutation graph. We also show that a minimum cardinality dominating cycle in a permutation graph always has an even number of vertices unless it is isomorphic to C3.  相似文献   

14.
Total domination critical and stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.  相似文献   

15.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.  相似文献   

16.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

17.
We initiate the study of outer-2-independent domination in graphs. An outer-2-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)?D has a neighbor in D and the maximum vertex degree of the subgraph induced by V(G)?D is at most one. The outer-2-independent domination number of a graph G is the minimum cardinality of an outer-2-independent dominating set of G. We show that if a graph has minimum degree at least two, then its outer-2-independent domination number equals the number of vertices minus the 2-independence number. Then we investigate the outer-2-independent domination in graphs with minimum degree one. We also prove the Vizing-type conjecture for outer-2-independent domination and disprove the Vizing-type conjecture for outer-connected domination.  相似文献   

18.
A vertex u in an undirected graph G = (V, E) is said to dominate all its adjacent vertices and itself. A subset D of V is a dominating set in G if every vertex in G is dominated by a vertex in D, and is a minimum dominating set in G if no other dominating set in G has fewer vertices than D. The domination number of G is the cardinality of a minimum dominating set in G.The problem of determining, for a given positive integer k and an undirected graph G, whether G has a dominating set D in G satisfying ¦D¦ ≤ k, is a well-known NP-complete problem. Cockayne have presented a linear time algorithm for finding a minimum dominating set in a tree. In this paper, we will present a linear time algorithm for finding a minimum dominating set in a series-parallel graph.  相似文献   

19.
Let T be a trail of a graph G. T is a spanning trail (S-trail) if T contains all vertices of G. T is a dominating trail (D-trail) if every edge of G is incident with at least one vertex of T. A circuit is a nontrivial closed trail. Sufficient conditions involving lower bounds on the degree-sum of vertices or edges are derived for graphs to have an S-trail, S-circuit, D-trail, or D-circuit. Thereby a result of Brualdi and Shanny and one mentioned by Lesniak-Foster and Williamson are improved.  相似文献   

20.
Given a simple undirected graph, the minimum connected dominating set problem is to find a minimum cardinality subset of vertices D inducing a connected subgraph such that each vertex outside D has at least one neighbor in D. Approximations of minimum connected dominating sets are often used to represent a virtual routing backbone in wireless networks. This paper first proposes a constant-ratio approximation algorithm for the minimum connected dominating set problem in unit ball graphs and then introduces and studies the edge-weighted bottleneck connected dominating set problem, which seeks a minimum edge weight in the graph such that the corresponding bottleneck subgraph has a connected dominating set of size k. In wireless network applications this problem can be used to determine an optimal transmission range for a network with a predefined size of the virtual backbone. We show that the problem is hard to approximate within a factor better than 2 in graphs whose edge weights satisfy the triangle inequality and provide a 3-approximation algorithm for such graphs. We also show that for fixed k the problem is polynomially solvable in unit disk and unit ball graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号