首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An edge cut W of a connected graph G is a k-restricted edge cut if GW is disconnected, and every component of GW has at least k vertices. The k-restricted edge connectivity is defined as the minimum cardinality over all k-restricted edge cuts. A permutation graph is obtained by taking two disjoint copies of a graph and adding a perfect matching between the two copies. The k-restricted edge connectivity of a permutation graph is upper bounded by the so-called minimum k-edge degree. In this paper some sufficient conditions guaranteeing optimal k-restricted edge connectivity and super k-restricted edge connectivity for permutation graphs are presented for k=2,3.  相似文献   

2.
Let G be a graph of order n(G), minimum degree δ(G) and connectivity κ(G). Chartrand and Harary [Graphs with prescribed connectivities, in: P. Erdös, G. Katona (Eds.), Theory of Graphs, Academic Press, New York, 1968, pp. 61-63] gave the following lower bound on the connectivity
κ(G)?2δ(G)+2-n(G).  相似文献   

3.
The atom-bond connectivity index is a useful topological index in studying the stability of alkanes and the strain energy of cycloalkanes. In this paper some inequalities for the atom-bond connectivity index of a series of graph operations are presented. We also prove our bounds are tight. As an application, the ABC indices of C4 nanotubes and nanotori are computed.  相似文献   

4.
5.
Given an edge- or vertex-weighted graph or digraph and a list of source-sink pairs, the minimum multicut problem consists in selecting a minimum weight set of edges or vertices whose removal leaves no path from each source to the corresponding sink. This is a classical NP-hard problem, and we show that the edge version becomes tractable in bounded tree-width graphs if the number of source-sink pairs is fixed, but remains NP-hard in directed acyclic graphs and APX-hard in bounded tree-width and bounded degree unweighted digraphs. The vertex version, although tractable in trees, is proved to be NP-hard in unweighted cacti of bounded degree and bounded path-width.  相似文献   

6.
7.
Linguists often represent the relationships between words in a collection of text as an undirected graph G=(V,E), where V is the vocabulary and vertices are adjacent in G if and only if the words that they represent co-occur in a relevant pattern in the text. Ideally, the words with similar meanings give rise to the vertices of a component of the graph. However, many words have several distinct meanings, preventing components from characterizing distinct semantic fields. This paper examines how the structural properties of triangular line graphs motivate the use of a clustering coefficient on the triangular line graph, thereby helping to identify polysemous words. The triangular line graph of G, denoted by T(G), is the subgraph of the line graph of G where two vertices are adjacent if the corresponding edges in G belong to a K3.  相似文献   

8.
Precoloring extension on unit interval graphs   总被引:1,自引:0,他引:1  
In the precoloring extension problem a graph is given with some of the vertices having preassigned colors and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. Answering an open question of Hujter and Tuza [Precoloring extension. III. Classes of perfect graphs, Combin. Probab. Comput. 5 (1) (1996) 35-56], we show that the precoloring extension problem is NP-complete on unit interval graphs.  相似文献   

9.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let α(G) denote the cardinality of a maximum independent set and fs(G) for 0≤sα(G) denote the number of independent sets of s vertices. The independence polynomial defined first by Gutman and Harary has been the focus of considerable research recently. Wingard bounded the coefficients fs(T) for trees T with n vertices: for s≥2. We generalize this result to bounds for a very large class of graphs, maximal k-degenerate graphs, a class which includes all k-trees. Additionally, we characterize all instances where our bounds are achieved, and determine exactly the independence polynomials of several classes of k-tree related graphs. Our main theorems generalize several related results known before.  相似文献   

10.
An edge-ordering of a graph G=(V,E) is a one-to-one function f from E to a subset of the set of positive integers. A path P in G is called an f-ascent if f increases along the edge sequence of P. The heighth(f) of f is the maximum length of an f-ascent in G.In this paper we deal with computational problems concerning finding ascents in graphs. We prove that for a given edge-ordering f of a graph G the problem of determining the value of h(f) is NP-hard. In particular, the problem of deciding whether there is an f-ascent containing all the vertices of G is NP-complete. We also study several variants of this problem, discuss randomized and deterministic approaches and provide an algorithm for the finding of ascents of order at least k in graphs of order n in running time O(4knO(1)).  相似文献   

11.
Proposing them as a general framework, Liu and Yu (2001) [6] introduced (n,k,d)-graphs to unify the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let G be a graph and let n,k and d be non-negative integers such that n+2k+d+2?|V(G)| and |V(G)|−nd is even. If on deleting any n vertices from G the remaining subgraph H of G contains a k-matching and each k-matching can be extended to a defect-d matching in H, then G is called an (n,k,d)-graph. In this paper, we obtain more properties of (n,k,d)-graphs, in particular the recursive relations of (n,k,d)-graphs for distinct parameters n,k and d. Moreover, we provide a characterization for maximal non-(n,k,d)-graphs.  相似文献   

12.
Given a graph G and a vertex subset S of V(G), the broadcasting time with respect toS, denoted by b(G,S), is the minimum broadcasting time when using S as the broadcasting set. And the k-broadcasting number, denoted by bk(G), is defined by bk(G)=min{b(G,S)|SV(G),|S|=k}.Given a graph G and two vertex subsets S, S of V(G), define , d(S,S)=min{d(u,v)|uS, vS}, and for all vV(G). For all k, 1?k?|V(G)|, the k-radius of G, denoted by rk(G), is defined as rk(G)=min{d(G,S)|SV(G), |S|=k}.In this paper, we study the relation between the k-radius and the k-broadcasting numbers of graphs. We also give the 2-radius and the 2-broadcasting numbers of the grid graphs, and the k-broadcasting numbers of the complete n-partite graphs and the hypercubes.  相似文献   

13.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

14.
Let jk≥0 be integers. An ?-L(j,k)-labelling of a graph G=(V,E) is a mapping ?:V→{0,1,2,…,?} such that |?(u)−?(v)|≥j if u,v are adjacent and |?(u)−?(v)|≥k if they are distance two apart. Let λj,k(G) be the smallest integer ? such that G admits an ?-L(j,k)-labelling. Define to be the smallest ? if G admits an ?-L(j,k)-labelling with ?(V)={0,1,2,…,?} and otherwise. An ?-cyclic L(j,k)-labelling is a mapping ?:VZ? such that |?(u)−?(v)|?j if u,v are adjacent and |?(u)−?(v)|?k if they are distance two apart, where |x|?=min{x,?x} for x between 0 and ?. Let σj,k(G) be the smallest ?−1 of such a labelling, and define similarly to . We determine λ2,0, , σ2,0 and for all Hamming graphs Kq1Kq2?Kqd (d≥2, q1q2≥?≥qd≥2) and give optimal labellings, with the only exception being for q≥4. We also prove the following “sandwich theorem”: If q1 is sufficiently large then for any graph G between Kq1Kq2 and Kq1Kq2?Kqd, and moreover we give a labelling which is optimal for these eight invariants simultaneously.  相似文献   

15.
16.
Let G=(V,E) be a finite, simple and non-empty (p,q)-graph of order p and size q. An (a,d)-vertex-antimagic total labeling is a bijection f from V(G)∪E(G) onto the set of consecutive integers 1,2,…,p+q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f(xy) assigned to all edges xy incident to vertex x together with the value assigned to x itself, i.e. f(x). Such a labeling is called super if the smallest possible labels appear on the vertices.In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs.  相似文献   

17.
18.
The existence of graph designs for the two nonisomorphic graphs on five vertices and eight edges is determined in the case of index one, with three possible exceptions in total. It is established that for the unique graph with vertex sequence (3, 3, 3, 3, 4), a graph design of order n exists exactly when and n≠16, with the possible exception of n=48. For the unique graph with vertex sequence (2,3,3,4,4), a graph design of order n exists exactly when , with the possible exceptions of n∈{32,48}.  相似文献   

19.
Given two nonnegative integers s and t, a graph G is (s,t)-supereulerian if for any disjoint sets X,YE(G) with |X|≤s and |Y|≤t, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s,t)-supereulerian, for any pair of nonnegative integers s and t with s+tk−1. We further show that if s+tk and G is a connected, locally k-edge-connected graph, then for any disjoint sets X,YE(G) with |X|≤s and |Yt, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if GY is not contractible to K2 or to K2,l with l odd.  相似文献   

20.
Recently, it has been shown in a series of works that the representation of graphs by Ordered Binary Decision Diagrams (OBDDs) often leads to good algorithmic behavior. However, the question for which graph classes an OBDD representation is advantageous, has not been investigated, yet. In this paper, the space requirements for the OBDD representation of certain graph classes, specifically cographs, several types of graphs with few P4s, unit interval graphs, interval graphs and bipartite graphs are investigated. Upper and lower bounds are proven for all these graph classes and it is shown that in most (but not all) cases a representation of the graphs by OBDDs is advantageous with respect to space requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号