首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an efficient algorithm that lists the minimal separators of a 3-connected planar graph in O(n) per separator.  相似文献   

2.
A linear time algorithm to list the minimal separators of chordal graphs   总被引:1,自引:0,他引:1  
Kumar and Madhavan [Minimal vertex separators of chordal graphs, Discrete Appl. Math. 89 (1998) 155-168] gave a linear time algorithm to list all the minimal separators of a chordal graph. In this paper we give another linear time algorithm for the same purpose. While the algorithm of Kumar and Madhavan requires that a specific type of PEO, namely the MCS PEO is computed first, our algorithm works with any PEO. This is interesting when we consider the fact that there are other popular methods such as Lex BFS to compute a PEO for a given chordal graph.  相似文献   

3.
A stable set of a graph is a vertex set in which any two vertices are not adjacent. It was proven in [A. Brandstädt, V.B. Le, T. Szymczak, The complexity of some problems related to graph 3-colorability, Discrete Appl. Math. 89 (1998) 59-73] that the following problem is NP-complete: Given a bipartite graph G, check whether G has a stable set S such thatG-Sis a tree. In this paper we prove the following problem is polynomially solvable: Given a graph G with maximum degree 3 and containing no vertices of degree 2, check whether G has a stable set S such thatG-Sis a tree. Thus we partly answer a question posed by the authors in the above paper. Moreover, we give some structural characterizations for a graph G with maximum degree 3 that has a stable set S such that G-S is a tree.  相似文献   

4.
A graph H has the property MT, if for all graphs G, G is H-free if and only if every minimal (chordal) triangulation of G is H-free. We show that a graph H satisfies property MT if and only if H is edgeless, H is connected and is an induced subgraph of P5, or H has two connected components and is an induced subgraph of 2P3.This completes the results of Parra and Scheffler, who have shown that MT holds for H=Pk, the path on k vertices, if and only if k?5 [A. Parra, P. Scheffler, Characterizations and algorithmic applications of chordal graph embeddings, Discrete Applied Mathematics 79 (1997) 171-188], and of Meister, who proved that MT holds for ?P2, ? copies of a P2, if and only if ??2 [D. Meister, A complete characterisation of minimal triangulations of 2K2-free graphs, Discrete Mathematics 306 (2006) 3327-3333].  相似文献   

5.
In this paper we present an extensive experimental study comparing four general-purpose graph drawing algorithms. The four algorithms take as input general graphs (with no restrictions whatsoever on connectivity, planarity, etc.) and construct orthogonal grid drawings, which are widely used in software and database visualization applications. The test data (available by anonymous ftp) are 11,582 graphs, ranging from 10 to 100 vertices, which have been generated from a core set of 112 graphs used in “real-life” software engineering and database applications. The experiments provide a detailed quantitative evaluation of the performance of the four algorithms, and show that they exhibit trade-offs between “aesthetic” properties (e.g., crossings, bends, edge length) and running time.  相似文献   

6.
Let G=(V,E) be a directed/undirected graph, let s,tV, and let F be an intersecting family on V (that is, XY,XYF for any intersecting X,YF) so that sX and tX for every XF. An edge set IE is an edge-cover of F if for every XF there is an edge in I from X to VX. We show that minimal edge-covers of F can be listed with polynomial delay, provided that, for any IE the minimal member of the residual family FI of the sets in F not covered by I can be computed in polynomial time. As an application, we show that minimal undirected Steiner networks, and minimal k-connected and k-outconnected spanning subgraphs of a given directed/undirected graph, can be listed in incremental polynomial time.  相似文献   

7.
The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic. The list vertex arboricity al(G) is the list-coloring version of this concept. In this note, we prove that if G is a toroidal graph, then al(G)4; and al(G)=4 if and only if G contains K7 as an induced subgraph.  相似文献   

8.
9.
《Journal of Graph Theory》2018,87(4):653-659
Weconsider the largest number of minimal separators a graph on n vertices can have.
  • – We give a new proof that this number is in .
  • – We prove that this number is in , improving on the previous best lower bound of .
This gives also an improved lower bound on the number of potential maximal cliques in a graph. We would like to emphasize that our proofs are short, simple, and elementary.  相似文献   

10.
We investigate the following modification of the well-known irregularity strength of graphs. Given a total weighting w of a graph G=(V,E) with elements of a set {1,2,…,s}, denote wtG(v)=∑evw(e)+w(v) for each vV. The smallest s for which exists such a weighting with wtG(u)≠wtG(v) whenever u and v are distinct vertices of G is called the total vertex irregularity strength of this graph, and is denoted by . We prove that for each graph of order n and with minimum degree δ>0.  相似文献   

11.
《Quaestiones Mathematicae》2013,36(4):547-561
Abstract

For a positive integer b, we define a set S of vertices in a graph G as a b-disjunctive dominating set if every vertex not in S is adjacent to a vertex of S or has at least b vertices in S at distance 2 from it. The b-disjunctive domination number is the minimum cardinality of such a set. This concept is motivated by the concepts of distance domination and exponential domination. In this paper, we start with some simple results, then establish bounds on the parameter especially for regular graphs and claw-free graphs. We also show that determining the parameter is NP-complete, and provide a linear-time algorithm for trees.  相似文献   

12.
Using ideas and results from polynomial time approximation and exact computation we design approximation algorithms for several NP-hard combinatorial problems achieving ratios that cannot be achieved in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation. We study in particular two paradigmatic problems, max independent set and min vertex cover.  相似文献   

13.
The square H2 of a graph H is obtained from H by adding new edges between every two vertices having distance two in H. A block graph is one in which every block is a clique. For the first time, good characterizations and a linear time recognition of squares of block graphs are given in this paper. Our results generalize several previous known results on squares of trees.  相似文献   

14.
In 1994 Fredman and Khachiyan established the remarkable result that the duality of a pair of monotone Boolean functions, in disjunctive normal forms, can be tested in quasi-polynomial time, thus putting the problem, most likely, somewhere between polynomiality and coNP-completeness. We strengthen this result by showing that the duality testing problem can in fact be solved in polylogarithmic time using a quasi-polynomial number of processors (in the PRAM model). While our decomposition technique can be thought of as a generalization of that of Fredman and Khachiyan, it yields stronger bounds on the sequential complexity of the problem in the case when the sizes of f and g are significantly different, and also allows for generating all minimal transversals of a given hypergraph using only polynomial space.  相似文献   

15.
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to υ, where E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ aa (G) ≤ 32Δ. Supported by the Natural Science Foundation of Gansu Province (3ZS051-A25-025)  相似文献   

16.
If k is a prime power, and G is a graph with n vertices, then a k‐coloring of G may be considered as a vector in $\mathbb{GF}$(k)n. We prove that the subspace of $\mathbb{GF}$(3)n spanned by all 3‐colorings of a planar triangle‐free graph with n vertices has dimension n. In particular, any such graph has at least n − 1 nonequivalent 3‐colorings, and the addition of any edge or any vertex of degree 3 results in a 3‐colorable graph. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 234–245, 2000  相似文献   

17.
In this paper the problem of optimally guillotine cutting a rectangle (AB  ) into small rectangles of two kinds is considered. Rectangles of the first kind (c,ai),i∈I(c,ai),iI have the same width, and their heights can be various. Rectangles of the second kind (bj,d),j∈J(bj,d),jJ have the same height, and their widths can be various. The number of occurrences of each small rectangle in a cutting pattern is not restricted. Similar problems often appear in the furniture industry. This cutting problem is reduced to the shortest path problem in a special rectangular grid, for which a linear time algorithm is suggested. This approach generalizes the approach of [E. Girlich, A.G. Tarnowski, On polynomial solvability of two multiprocessor scheduling problems, Mathematical Methods of Operations Research 50 (1999) 27–51; A.G. Tarnowski, Advanced polynomial time algorithm for guillotine generalized pallet loading problem, in: The International Scientific Collection: Decision Making Under Conditions of Uncertainty (Cutting-Packing Problems), Ufa State Aviation Technical University, 1997, pp. 93–124] and allows us to construct polynomial algorithms for the guillotine cutting problem considered with a fixed number of small rectangles of two kinds.  相似文献   

18.
A path cover of a graph G=(V,E) is a set of pairwise vertex-disjoint paths such that the disjoint union of the vertices of these paths equals the vertex set V of G. The path cover problem is, given a graph, to find a path cover having the minimum number of paths. The path cover problem contains the Hamiltonian path problem as a special case since finding a path cover, consisting of a single path, corresponds directly to the Hamiltonian path problem. A graph is a distance-hereditary graph if each pair of vertices is equidistant in every connected induced subgraph containing them. The complexity of the path cover problem on distance-hereditary graphs has remained unknown. In this paper, we propose the first polynomial-time algorithm, which runs in O(|V|9) time, to solve the path cover problem on distance-hereditary graphs.  相似文献   

19.
Let G=(V,E) be a simple, connected and undirected graph with vertex set V(G) and edge set E(G). Also let D(G) be the distance matrix of a graph G (Jane?i? et al., 2007) [13]. Here we obtain Nordhaus–Gaddum-type result for the spectral radius of distance matrix of a graph.A sharp upper bound on the maximal entry in the principal eigenvector of an adjacency matrix and signless Laplacian matrix of a simple, connected and undirected graph are investigated in Das (2009) [4] and Papendieck and Recht (2000) [15]. Generally, an upper bound on the maximal entry in the principal eigenvector of a symmetric nonnegative matrix with zero diagonal entries and without zero diagonal entries are investigated in Zhao and Hong (2002) [21] and Das (2009) [4], respectively. In this paper, we obtain an upper bound on minimal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs. Moreover, we present the lower and upper bounds on maximal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs.  相似文献   

20.
We present a lower bound for the smallest non-zero eigenvalue of the Laplacian of an undirected graph. The bound is primarily useful for graphs with small diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号