首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

2.
3.
Let G be a graph. The connectivity of G, κ(G), is the maximum integer k such that there exists a k-container between any two different vertices. A k-container of G between u and v, Ck(u,v), is a set of k-internally-disjoint paths between u and v. A spanning container is a container that spans V(G). A graph G is k-connected if there exists a spanning k-container between any two different vertices. The spanning connectivity of G, κ(G), is the maximum integer k such that G is w-connected for 1≤wk if G is 1-connected.Let x be a vertex in G and let U={y1,y2,…,yk} be a subset of V(G) where x is not in U. A spanningk−(x,U)-fan, Fk(x,U), is a set of internally-disjoint paths {P1,P2,…,Pk} such that Pi is a path connecting x to yi for 1≤ik and . A graph G is k-fan-connected (or -connected) if there exists a spanning Fk(x,U)-fan for every choice of x and U with |U|=k and xU. The spanning fan-connectivity of a graph G, , is defined as the largest integer k such that G is -connected for 1≤wk if G is -connected.In this paper, some relationship between κ(G), κ(G), and are discussed. Moreover, some sufficient conditions for a graph to be -connected are presented. Furthermore, we introduce the concept of a spanning pipeline-connectivity and discuss some sufficient conditions for a graph to be k-pipeline-connected.  相似文献   

4.
For a connected graph G of order p≥2, a set SV(G) is a geodetic set of G if each vertex vV(G) lies on an x-y geodesic for some elements x and y in S. The minimum cardinality of a geodetic set of G is defined as the geodetic number of G, denoted by g(G). A geodetic set of cardinality g(G) is called a g-set of G. A connected geodetic set of G is a geodetic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by gc(G). A connected geodetic set of cardinality gc(G) is called a gc-set of G. A connected geodetic set S in a connected graph G is called a minimal connected geodetic set if no proper subset of S is a connected geodetic set of G. The upper connected geodetic number is the maximum cardinality of a minimal connected geodetic set of G. We determine bounds for and determine the same for some special classes of graphs. For positive integers r,d and nd+1 with rd≤2r, there exists a connected graph G with , and . Also, for any positive integers 2≤a<bc, there exists a connected graph G such that g(G)=a, gc(G)=b and . A subset T of a gc-set S is called a forcing subset for S if S is the unique gc-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected geodetic number of S, denoted by fc(S), is the cardinality of a minimum forcing subset of S. The forcing connected geodetic number of G, denoted by fc(G), is fc(G)=min{fc(S)}, where the minimum is taken over all gc-sets S in G. It is shown that for every pair a,b of integers with 0≤ab−4, there exists a connected graph G such that fc(G)=a and gc(G)=b.  相似文献   

5.
6.
7.
If G is a connected graph with vertex set V, then the degree distance of G, D(G), is defined as , where degw is the degree of vertex w, and d(u,v) denotes the distance between u and v. We prove the asymptotically sharp upper bound for graphs of order n and diameter d. As a corollary we obtain the bound for graphs of order n. This essentially proves a conjecture by Tomescu [I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. (98) (1999) 159-163].  相似文献   

8.
9.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

10.
11.
This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of {1,2,…,k} such that for any vertex v with f(v)=0? we have ∪uNG(v)f(u)={1,2,…,k}. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G, that is the minimum value of ∑vV(G)|f(v)| where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that .  相似文献   

12.
13.
14.
15.
16.
17.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

18.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

19.
Given a graph G and a vertex subset S of V(G), the broadcasting time with respect toS, denoted by b(G,S), is the minimum broadcasting time when using S as the broadcasting set. And the k-broadcasting number, denoted by bk(G), is defined by bk(G)=min{b(G,S)|SV(G),|S|=k}.Given a graph G and two vertex subsets S, S of V(G), define , d(S,S)=min{d(u,v)|uS, vS}, and for all vV(G). For all k, 1?k?|V(G)|, the k-radius of G, denoted by rk(G), is defined as rk(G)=min{d(G,S)|SV(G), |S|=k}.In this paper, we study the relation between the k-radius and the k-broadcasting numbers of graphs. We also give the 2-radius and the 2-broadcasting numbers of the grid graphs, and the k-broadcasting numbers of the complete n-partite graphs and the hypercubes.  相似文献   

20.
Let jk≥0 be integers. An ?-L(j,k)-labelling of a graph G=(V,E) is a mapping ?:V→{0,1,2,…,?} such that |?(u)−?(v)|≥j if u,v are adjacent and |?(u)−?(v)|≥k if they are distance two apart. Let λj,k(G) be the smallest integer ? such that G admits an ?-L(j,k)-labelling. Define to be the smallest ? if G admits an ?-L(j,k)-labelling with ?(V)={0,1,2,…,?} and otherwise. An ?-cyclic L(j,k)-labelling is a mapping ?:VZ? such that |?(u)−?(v)|?j if u,v are adjacent and |?(u)−?(v)|?k if they are distance two apart, where |x|?=min{x,?x} for x between 0 and ?. Let σj,k(G) be the smallest ?−1 of such a labelling, and define similarly to . We determine λ2,0, , σ2,0 and for all Hamming graphs Kq1Kq2?Kqd (d≥2, q1q2≥?≥qd≥2) and give optimal labellings, with the only exception being for q≥4. We also prove the following “sandwich theorem”: If q1 is sufficiently large then for any graph G between Kq1Kq2 and Kq1Kq2?Kqd, and moreover we give a labelling which is optimal for these eight invariants simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号