首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a graph G, it is known to be a hard problem to compute the competition number k(G) of the graph G in general. In this paper, we give an explicit formula for the competition numbers of complete tripartite graphs.  相似文献   

2.
A hole of a graph is an induced cycle of length at least 4. Kim (2005) [2] conjectured that the competition number k(G) is bounded by h(G)+1 for any graph G, where h(G) is the number of holes of G. In Lee et al. [3], it is proved that the conjecture is true for a graph whose holes are mutually edge-disjoint. In Li et al. (2009) [4], it is proved that the conjecture is true for a graph, all of whose holes are independent. In this paper, we prove that Kim’s conjecture is true for a graph G satisfying the following condition: for each hole C of G, there exists an edge which is contained only in C among all induced cycles of G.  相似文献   

3.
The boxicity box(H) of a graph H is the smallest integer d such that H is the intersection of d interval graphs, or equivalently, that H is the intersection graph of axis-aligned boxes in Rd. These intersection representations can be interpreted as covering representations of the complement Hc of H with co-interval graphs, that is, complements of interval graphs. We follow the recent framework of global, local and folded covering numbers (Knauer and Ueckerdt, 2016) to define two new parameters: the local boxicity box?(H) and the union boxicity box¯(H) of H. The union boxicity of H is the smallest d such that Hc can be covered with d vertex–disjoint unions of co-interval graphs, while the local boxicity of H is the smallest d such that Hc can be covered with co-interval graphs, at most d at every vertex.We show that for every graph H we have box?(H)box¯(H)box(H) and that each of these inequalities can be arbitrarily far apart. Moreover, we show that local and union boxicity are also characterized by intersection representations of appropriate axis-aligned boxes in Rd. We demonstrate with a few striking examples, that in a sense, the local boxicity is a better indication for the complexity of a graph, than the classical boxicity.  相似文献   

4.
Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u,x) and (v,x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices.A hole of a graph is an induced cycle of length at least four. Kim (2005) [8] conjectured that the competition number of a graph with h holes is at most h+1. Recently, Li and Chang (2009) [11] showed that the conjecture is true when the holes are independent. In this paper, we show that the conjecture is true though the holes are not independent but mutually edge-disjoint.  相似文献   

5.
Let F be a family of translates of a fixed convex set M in Rn. Let τ(F) and ν(F) denote the transversal number and the independence number of F, respectively. We show that ν(F)?τ(F)?8ν(F)-5 for n=2 and τ(F)?2n-1nnν(F) for n?3. Furthermore, if M is centrally symmetric convex body in the plane, then ν(F)?τ(F)?6ν(F)-3.  相似文献   

6.
The notion of a competition multigraph was introduced by C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee [C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee: Competition multigraphs and the multicompetition number, Ars Combinatoria 29B (1990) 185-192] as a generalization of the competition graphs of digraphs.In this note, we give a characterization of competition multigraphs of arbitrary digraphs and a characterization of competition multigraphs of loopless digraphs. Moreover, we characterize multigraphs whose multicompetition numbers are at most m, where m is a given nonnegative integer and give characterizations of competition multihypergraphs.  相似文献   

7.
Let P be a finite poset and H(P) be the hypergraph whose vertices are the points of P and whose edges are the maximal intervals in P. We study the domatic number d(G(P)) and the total domatic number dt(G(P)) of the 2-section graph G(P) of H(P). For the subset Pl,u of P induced by consecutive levels of P, we give exact values of d(G(Pl,u)) when P is the chain product Cn1×Cn2. According to the values of l,u,n1,n2, the maximal domatic partition is exhibited. Moreover, we give some exact values or lower bounds for d(G(PQ)) and dt(G(Pl,u)), when ∗ is the direct sum, the linear sum or the Cartesian product. Finally we show that the domatic number and the total domatic number problems in this class of graphs are NP-complete.  相似文献   

8.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph has been studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is not smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.  相似文献   

9.
We investigate the relation between the multichromatic number (discussed by Stahl and by Hilton, Rado and Scott) and the star chromatic number (introduced by Vince) of a graph. Denoting these by χ* and η*, the work of the above authors shows that χ*(G) = η*(G) if G is bipartite, an odd cycle or a complete graph. We show that χ*(G) ≤ η*(G) for any finite simple graph G. We consider the Kneser graphs , for which χ* = m/n and η*(G)/χ*(G) is unbounded above. We investigate particular classes of these graphs and show that η* = 3 and η* = 4; (n ≥ 1), and η* = m - 2; (m ≥ 4). © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 137–145, 1997  相似文献   

10.
11.
The biplanar crossing number cr2(G) of a graph G is min{cr(G1) + cr(G2)}, where cr is the planar crossing number. We show that cr2(G) ≤ (3/8)cr(G). Using this result recursively, we bound the thickness by Θ(G) ‐ 2 ≤ Kcr2(G)0.4057 log2n with some constant K. A partition realizing this bound for the thickness can be obtained by a polynomial time randomized algorithm. We show that for any size exceeding a certain threshold, there exists a graph G of this size, which simultaneously has the following properties: cr(G) is roughly as large as it can be for any graph of that size, and cr2(G) is as small as it can be for any graph of that size. The existence is shown using the probabilistic method. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

12.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, and a double dominating set is a dominating set that dominates every vertex of G at least twice. We show that for trees, the paired-domination number is less than or equal to the double domination number, solving a conjecture of Chellali and Haynes. Then we characterize the trees having equal paired and double domination numbers.  相似文献   

13.
For a poset P=(X,≤P), the double bound graph (DB-graph) of P is the graph DB(P)=(X,EDB(P)), where xyEDB(P) if and only if xy and there exist n,mX such that nPx,yPm. We obtain that for a subposet Q of a poset P,Q is an (n, m)-subposet of P if and only if DB(Q) is an induced subgraph DB(P). Using this result, we show some characterizations of split double bound graphs, threshold double bound graphs and difference double bound graphs in terms of (n, m)-subposets and double canonical posets.  相似文献   

14.
15.
16.
《Discrete Mathematics》2019,342(6):1687-1695
We study the possible values of the matching number among all trees with a given degree sequence as well as all bipartite graphs with a given bipartite degree sequence. For tree degree sequences, we obtain closed formulas for the possible values. For bipartite degree sequences, we show the existence of realizations with a restricted structure, which allows to derive an analogue of the Gale–Ryser Theorem characterizing bipartite degree sequences. More precisely, we show that a bipartite degree sequence has a realization with a certain matching number if and only if a cubic number of inequalities similar to those in the Gale–Ryser Theorem are satisfied. For tree degree sequences as well as for bipartite degree sequences, the possible values of the matching number form intervals.  相似文献   

17.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

18.
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq fluid, which is heated and salted from below in the presence of Soret coefficient is studied analytically using both linear and nonlinear stability analyses. The normal mode technique is used in the linear stability analysis while a weak nonlinear analysis based on a minimal representation of double Fourier series method is used in the nonlinear analysis. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameters, solute Rayleigh number, Soret parameter and Lewis number on the stationary, oscillatory, finite amplitude convection and heat and mass transfer are shown graphically.  相似文献   

19.
2-控制数和连通2-控制数相等的图(英文)   总被引:1,自引:0,他引:1  
任意一个图G =(V ,E) ,S是V(G)的子集 ,如果对每一个顶点u∈V-S都存在顶点v∈S ,使得d(u ,v) ≤ 2 ,则称S为G的一个 2 控制 .称最小的 2 控制集的顶点个数为G的 2 控制数 ,记为γ2 (G) .如果G的一个 2 控制集S的生成子集〈S〉是一个连通图 ,则称S为G的一个连通 2 控制集 .称最小的连通 2 控制集的顶点个数为G的连通 2 控制数 ,记为γc2 (G) .本文论述了树和单圈图中 2 控制数和连通 2 控制数相等的充分必要条件 .  相似文献   

20.
Since Cohen introduced the competition graph in 1968, the competition graph has been studied widely and many variations of it have been discussed. In 2000, Cho, Kim and Nam defined and studied the m-step competition graph and computed the 2-step competition numbers of paths and cycles. Recently, Ho gave bounds for the m-step competition numbers of paths and cycles. In this paper we continue to study the m-step competition numbers of paths and cycles, partially improve the results of Ho on the upper bounds of the m-step competition numbers of paths and cycles, and show that a conjecture posed by Ho is not true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号