首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reformulation–linearization technique (RLT), introduced in [Sherali, H. D., Adams. W. P. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430], provides a way to compute a hierarchy of linear programming bounds on the optimal values of NP-hard combinatorial optimization problems. In this paper we show that, in the presence of suitable algebraic symmetry in the original problem data, it is sometimes possible to compute level two RLT bounds with additional linear matrix inequality constraints. As an illustration of our methodology, we compute the best-known bounds for certain graph partitioning problems on strongly regular graphs.  相似文献   

2.
This paper studies the global optimization of polynomial programming problems using Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations. We introduce a new class of bound-grid-factor constraints that can be judiciously used to augment the basic RLT relaxations in order to improve the quality of lower bounds and enhance the performance of global branch-and-bound algorithms. Certain theoretical properties are established that shed light on the effect of these valid inequalities in driving the discrepancies between RLT variables and their associated nonlinear products to zero. To preserve computational expediency while promoting efficiency, we propose certain concurrent and sequential cut generation routines and various grid-factor selection rules. The results indicate a significant tightening of lower bounds, which yields an overall reduction in computational effort for solving a test-bed of polynomial programming problems to global optimality in comparison with the basic RLT procedure as well as the commercial software BARON.  相似文献   

3.
We consider relaxations for nonconvex quadratically constrained quadratic programming (QCQP) based on semidefinite programming (SDP) and the reformulation-linearization technique (RLT). From a theoretical standpoint we show that the addition of a semidefiniteness condition removes a substantial portion of the feasible region corresponding to product terms in the RLT relaxation. On test problems we show that the use of SDP and RLT constraints together can produce bounds that are substantially better than either technique used alone. For highly symmetric problems we also consider the effect of symmetry-breaking based on tightened bounds on variables and/or order constraints.  相似文献   

4.
The Reformulation-Linearization Technique (RLT) provides a hierarchy of relaxations spanning the spectrum from the continuous relaxation to the convex hull representation for linear 0-1 mixed-integer and general mixed-discrete programs. We show in this paper that this result holds identically for semi-infinite programs of this type. As a consequence, we extend the RLT methodology to describe a construct for generating a hierarchy of relaxations leading to the convex hull representation for bounded 0-1 mixed-integer and general mixed-discrete convex programs, using an equivalent semi-infinite linearized representation for such problems as an intermediate stepping stone in the analysis. For particular use in practice, we provide specialized forms of the resulting first-level RLT formulation for such mixed 0-1 and discrete convex programs, and illustrate these forms through two examples.  相似文献   

5.
We consider linear mixed-integer programs where a subset of the variables are restricted to take on a finite number of general discrete values. For this class of problems, we develop a reformulation-linearization technique (RLT) to generate a hierarchy of linear programming relaxations that spans the spectrum from the continuous relaxation to the convex hull representation. This process involves a reformulation phase in which suitable products using a defined set of Lagrange interpolating polynomials (LIPs) are constructed, accompanied by the application of an identity that generalizes x(1−x) for the special case of a binary variable x. This is followed by a linearization phase that is based on variable substitutions. The constructs and arguments are distinct from those for the mixed 0-1 RLT, yet they encompass these earlier results. We illustrate the approach through some examples, emphasizing the polyhedral structure afforded by the linearized LIPs. We also consider polynomial mixed-integer programs, exploitation of structure, and conditional-logic enhancements, and provide insight into relationships with a special-structure RLT implementation.  相似文献   

6.
Branch-and-Cut algorithms for general 0–1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or normalized. We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts.  相似文献   

7.
In this paper, we propose to enhance Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations for polynomial programming problems by developing cutting plane strategies using concepts derived from semidefinite programming. Given an RLT relaxation, we impose positive semidefiniteness on suitable dyadic variable-product matrices, and correspondingly derive implied semidefinite cuts. In the case of polynomial programs, there are several possible variants for selecting such particular variable-product matrices on which positive semidefiniteness restrictions can be imposed in order to derive implied valid inequalities. This leads to a new class of cutting planes that we call v-semidefinite cuts. We explore various strategies for generating such cuts, and exhibit their relative effectiveness towards tightening the RLT relaxations and solving the underlying polynomial programming problems in conjunction with an RLT-based branch-and-cut scheme, using a test-bed of problems from the literature as well as randomly generated instances. Our results demonstrate that these cutting planes achieve a significant tightening of the lower bound in contrast with using RLT as a stand-alone approach, thereby enabling a more robust algorithm with an appreciable reduction in the overall computational effort, even in comparison with the commercial software BARON and the polynomial programming problem solver GloptiPoly.  相似文献   

8.
《Journal of Complexity》2000,16(2):424-458
The asymptotic behavior of the n-widths of a wide range of sets of smooth functions on a d-dimensional sphere in Lq(Sd) is studied. Upper and lower bounds for the n-widths are established. Moreover, it is shown that these upper and lower bounds coincide for some important concrete examples.  相似文献   

9.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

10.
We present a hierarchy of semidefinite programming (SDP) relaxations for solving the concave cost transportation problem (CCTP), which is known to be NP-hard, with p suppliers and q demanders. In particular, we study cases in which the cost function is quadratic or square-root concave. The key idea of our relaxation methods is in the change of variables to CCTPs, and due to this, we can construct SDP relaxations whose matrix variables are of size O((min {p, q}) ω ) in the relaxation order ω. The sequence of optimal values of SDP relaxations converges to the global minimum of the CCTP as the relaxation order ω goes to infinity. Furthermore, the size of the matrix variables can be reduced to O((min {p, q}) ω-1 ), ω ≥  2 by using Reznick’s theorem. Numerical experiments were conducted to assess the performance of the relaxation methods.  相似文献   

11.
This work presents Lagrangean/surrogate relaxation to the problem of maximum profit assignment of n tasks to m agents (n > m), such that each task is assigned to only one agent subject to capacity constraints on the agents. The Lagrangean/surrogate relaxation combines usual Lagrangean and surrogate relaxations relaxing first a set of constraints in the surrogate way. Then, the Lagrangean relaxation of the surrogate constraint is obtained and approximately optimized (one-dimensional dual). The Lagrangean/surrogate is compared with the usual Lagrangean relaxation on a computational study using a large set of instances. The dual bounds are the same for both relaxations, but the Lagrangean/surrogate can give improved local bounds at the application of a subgradient method, resulting in less computational times. Three relaxations are derived for the problem. The first relaxation considers a vector of multipliers for the capacity constraints, the second for the assignment constraints and the other for the Lagrangean decomposition constraints. Relaxation multipliers are used with efficient constructive heuristics to find good feasible solutions. The application of a Lagrangean/surrogate approach seems very promising for large scale problems.  相似文献   

12.
Semidefinite programming, SDP, relaxations have proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem, QAP, arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the SDP relaxation, e.g., increased dimension; inefficiency of the current primal–dual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding cutting plane constraints. We propose using the alternating direction method of multipliers ADMM in combination with facial reduction, FR, to solve the SDP relaxation. This first order approach allows for: inexpensive iterations, a method of cheaply obtaining low rank solutions; and a trivial way of exploiting the FR for adding cutting plane inequalities. In fact, we solve the doubly nonnegative, DNN, relaxation that includes both the SDP and all the nonnegativity constraints. When compared to current approaches and current best available bounds we obtain robustness, efficiency and improved bounds.  相似文献   

13.
A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher-dimensional space by introducing variables Y ij to represent each of the products x i x j of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint Y - x xT \succeq 0{Y - x x^T \succeq 0} and disjunctive programming. On the other hand, the main drawback of such an extended formulation is its huge size, even for problems for which the number of x i variables is moderate. In this paper, we study methods to build low-dimensional relaxations of MIQCP that capture the strength of the extended formulations. To do so, we use projection techniques pioneered in the context of the lift-and-project methodology. We show how the extended formulation can be algorithmically projected to the original space by solving linear programs. Furthermore, we extend the technique to project the SDP relaxation by solving SDPs. In the case of an MIQCP with a single quadratic constraint, we propose a subgradient-based heuristic to efficiently solve these SDPs. We also propose a new eigen-reformulation for MIQCP, and a cut generation technique to strengthen this reformulation using polarity. We present extensive computational results to illustrate the efficiency of the proposed techniques. Our computational results have two highlights. First, on the GLOBALLib instances, we are able to generate relaxations that are almost as strong as those proposed in our companion paper even though our computing times are about 100 times smaller, on average. Second, on box-QP instances, the strengthened relaxations generated by our code are almost as strong as the well-studied SDP+RLT relaxations and can be solved in less than 2 s, even for large instances with 100 variables; the SDP+RLT relaxations for the same set of instances can take up to a couple of hours to solve using a state-of-the-art SDP solver.  相似文献   

14.
A great deal of research has been focusing, since the early seventies, on finding strong relaxations for the stable set problem. Polyhedral combinatorics techniques have been at first developed to strengthen the natural linear formulation. Afterward, strong semidefinite programming relaxations have been deeply investigated. Nevertheless, the resulting integer programming (IP) algorithms cannot be regarded as being quite successful in practice, as most of the relaxations give rise to one out of two extreme situations: either provide weak bounds at low computational cost or give good bounds (sometimes excellent) but too demanding to compute. In this paper we present a method to bridge such a gap. In particular, a new lift-and-project relaxation is obtained by a problem-specific variant of the lifting operator M(K, K) by Lovász and Schrijver, combined with Benders decomposition. This yields strong cutting planes, generated by solving a cut generating linear program. An extensive computational experience shows that embedding these cuts in a branch-and-cut framework significantly reduces the size of the enumeration trees as well as the CPU times with respect to state-of-the-art IP algorithms.  相似文献   

15.
We investigate lower bounds for the eigenvalues of perturbations of matrices. In the footsteps of Weyl and Ipsen & Nadler, we develop approximating matrices whose eigenvalues are lower bounds for the eigenvalues of the perturbed matrix. The number of available eigenvalues and eigenvectors of the original matrix determines how close those approximations can be, and, if the perturbation is of low rank, such bounds are relatively inexpensive to obtain. Moreover, because the process need not be restricted to the eigenvalues of perturbed matrices, lower bounds for eigenvalues of bordered diagonal matrices as well as for singular values of rank-k perturbations and other updates of n×m matrices are given.  相似文献   

16.
This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in ${\mathbb{R}^m}$ which are determined by a freely chosen m × m positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based on the basic idea of lifting, we first present a conceptual min-max problem to determine an ellipsoidal set with the smallest size in this class which encloses a given subset of ${\mathbb{R}^m}$ . Then we derive a numerically tractable enclosing ellipsoidal set of a given semialgebraic subset of ${\mathbb{R}^m}$ as a convex relaxation of the min-max problem in the lifting space. A main feature of the proposed method is that it is designed to incorporate into existing SDP relaxations with exploiting sparsity for various optimization problems to compute error bounds of their optimal solutions. We discuss how we adapt the method to a standard SDP relaxation for quadratic optimization problems and a sparse variant of Lasserre’s hierarchy SDP relaxation for polynomial optimization problems. Some numerical results on the sensor network localization problem and polynomial optimization problems are also presented.  相似文献   

17.
We propose in this paper a general D.C. decomposition scheme for constructing SDP relaxation formulations for a class of nonconvex quadratic programs with a nonconvex quadratic objective function and convex quadratic constraints. More specifically, we use rank-one matrices and constraint matrices to decompose the indefinite quadratic objective into a D.C. form and underestimate the concave terms in the D.C. decomposition formulation in order to get a convex relaxation of the original problem. We show that the best D.C. decomposition can be identified by solving an SDP problem. By suitably choosing the rank-one matrices and the linear underestimation, we are able to construct convex relaxations that dominate Shor’s SDP relaxation and the strengthened SDP relaxation. We then propose an extension of the D.C. decomposition to generate an SDP bound that is tighter than the SDP+RLT bound when additional box constraints are present. We demonstrate via computational results that the optimal D.C. decomposition schemes can generate both tight SDP bounds and feasible solutions with good approximation ratio for nonconvex quadratically constrained quadratic problems.  相似文献   

18.
We introduce a new method of proving lower bounds on the depth of algebraicd-degree decision (resp. computation) trees and apply it to prove a lower bound Ω (logN) (resp. Ω (log N/log logN)) for testing membership to an n-dimensional convex polyhedron havingN faces of all dimensions, provided thatN > (nd)Ω(n) (resp.N > nΩ(n)). This bound apparently does not follow from the methods developed by Ben-Or, Björner, Lovasz, and Yao [1], [4], [24] because topological invariants used in these methods become trivial for convex polyhedra  相似文献   

19.
This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems. Utilizing a basis partitioning scheme for an embedded linear equality subsystem, we show that a strict subset of RLT defining equalities imply the remaining ones. Applying this result, we derive significantly reduced RLT representations and develop certain coherent associated branching rules that assure convergence to a global optimum, along with static as well as dynamic basis selection strategies to implement the proposed procedure. In addition, we enhance the RLT relaxations with v-semidefinite cuts, which are empirically shown to further improve the relative performance of the reduced RLT method over the usual RLT approach. We present computational results for randomly generated instances to test the different proposed reduction strategies and to demonstrate the improvement in overall computational effort when such reduced RLT mechanisms are employed.  相似文献   

20.
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set {+,?, 0} ({+, 0}, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix A is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of A. Using a correspondence between sign patterns with minimum rank r ≥ 2 and point-hyperplane configurations in Rr?1 and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every d-polytope determines a nonnegative sign pattern with minimum rank d + 1 that has a (d + 1) × (d + 1) triangular submatrix with all diagonal entries positive. It is also shown that there are at most min{3m, 3n} zero entries in any condensed nonnegative m × n sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号