首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Automatic registration for images of two-dimensional protein gels.   总被引:5,自引:0,他引:5  
Z Smilansky 《Electrophoresis》2001,22(9):1616-1626
Two-dimensional polyacrylamide gel electrophoresis 1 (2-D PAGE 1) is currently the method of choice for separating complex mixtures of cellular proteins. Despite its usefulness, 2-D PAGE is not being applied to its full potential because of difficulties with both the method and analysis of the results. One of the key problems is the difficulty and slowness of image analysis, especially registration (image alignment), which is laborious and the results unsatisfactory. We have developed a novel system for analysis of 2-D PAGE images, called Z3, that performs the analysis faster and more precisely. The Z3 system employs novel approaches to image registration, image display, computation of differential expression, and the design and analysis of 2-D gel experiments. This paper describes in detail the registration algorithm, and briefly discusses the merits of complementary pseudocolor display. The registration algorithm is novel in that for the first time raw-image-based registration technology is applied to 2-D gel analysis.  相似文献   

2.
The feasibility of detecting quantitative genetic variants based on a decrease in the integrated intensity of polypeptide spots in two-dimensional polyacrylamide gels of human lymphoblastoid cell clones was investigated. A battery of 65 spots on 115 gels was studied to determine the distribution of quantitative measures for spots where no mutation had occurred. The corresponding distribution for spots which have decreased integrated intensity as a result of a mutation at one of two alleles coding for the spot was investigated by quantitating spots for which mutations were known to have occurred. These two distributions allowed the estimation of the rates of false positive and false negative errors for any particular strategy aimed at detecting null mutations, and thus provides a basis for the design of efficient strategies. Our silver stained gels have sufficient reproducibility of spot integrated intensities so that, for situations in which the mutation rate is relatively high, it is practical to monitor a subset of spots for null variants using the same digitized images as are used to detect structural variants.  相似文献   

3.
This report describes the incorporation of an alkyl maltoside detergent in two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) sample lysis buffer in order to improve resolution of protein patterns separated by nonequilibrium pH gradient electrophoresis. Membrane-associated proteins with alkaline isoelectric points form horizontal streaks on two-dimensional electrophoretograms when solubilized with conventional nonionic detergent. Dodecyl maltoside enhances protein delipidation during solubilization and improves pattern resolution and protein mobility.  相似文献   

4.
H Klerk  A Jespers 《Electrophoresis》1990,11(5):420-424
Comparing and analyzing a series of two-dimensional gels by hand is troublesome and subjective. So far a number of systems for automatic analysis have been developed on mainly mainframe computers, using complex algorithms. This paper presents an inexpensive system, based on a simple Pascal program, to compare individual spots on two-dimensional gels using an IBM or compatible personal computer in a qualitative way. The accuracy of the method is demonstrated by comparing two patterns of the same extract from different runs.  相似文献   

5.
Summary A creep study has been made of pectin gels concentrated to 0.5–2.5% in the temperature interval 25 to 50°C. In the region of linear viscoelasticity the pectin gels are capable of being strained both reversibly and irreversibly. The shape of the reversible strain relaxation curves corresponds to the transition region between the glassy and highly elastic states. The temperature dependence of the largest Newtonian viscosity is described by de Guzmán-Arrhenius equation. The break-down enthalpy of the gel cross-links is between 51 and 74 kJ/mole, showing an increase with concentration.With 10 figures and 1 table  相似文献   

6.
The solubilization of a particular protein is mandatory for its subsequent resolution and detection in two-dimensional gels. However, the extraction solutions, that are compatible with the first-dimensional separation step, such as urea and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), do not solubilize all proteins in a sample. We studied the effect of various common, strong detergents and chaotropes, widely used as solubilizing agents, such as sodium dodecyl sulfate, lithium dodecyl sulfate and guanidine hydrochloride, on the solubilization of the total and membrane proteins of the bacterium Haemophilus influenzae. The proteins solubilized with each system were analyzed by two-dimensional electrophoresis and these of interest were identified by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Use of sodium dodecyl sulfate, lithium dodecyl sulfate or guanidine hydrochloride for the solubilization of total proteins of the microorganism resulted in the detection of several additional spots, representing mainly outer membrane proteins, in comparison with those detected in the soluble protein fraction. Solubilization of the proteins of the cell envelope fraction with sodium dodecyl sulfate did not result in a more efficient protein detection when compared to the extraction with the urea/CHAPS system. When the dry immobilized pH gradient strips were rehydrated in a solution containing the proteins of the membrane fraction solubilized with sodium dodecyl sulfate or lithium dodecyl sulfate, a larger number of protein spots were detected in comparison with strips that were rehydrated in the urea/CHAPS solution. However, no improvement was observed in comparison with protein application in sample cups. The additional proteins detected with the use of strong detergents and chaotropes are in the majority difficult to solubilize and less hydrophobic proteins.  相似文献   

7.
With the growing importance of proteomics in biomedical and pharmaceutical sciences a need has emerged for computing tools that are capable of digitally visualizing and analyzing protein spot patterns within two-dimensional electrophoresis (2-DE) gel. Matching programs need to meet requirements such as interlaboratory comparison and the comparison of samples from different origins. For such research purposes, we have developed the CAROL system that implements new algorithms for spot detection and matching, which enable researchers to take a different approach to protein spot identification and comparison. The present short communication discusses how the system deals with uncertain geometric spot information that arises from streaks and complex spot regions and how this can be amplified for the matching procedure.  相似文献   

8.
The number of unique protein species in proteomes from a single mammalian cell type is not well defined but is likely to be at least 10000-20000. Since standard-size two-dimensional gels typically resolve only about 1500 to 3000 spots, they merely analyze a small portion of these proteomes. In addition, all insoluble proteins and typically proteins > 100 kDa are seldom resolved on two-dimensional (2-D) gels. The current study demonstrates the feasibility of an overall strategy for more comprehensive quantitative comparisons of complex proteomes derived from physiological fluids or mammalian cell extracts. A key feature of this approach is to prefractionate samples into a few well-resolved fractions based on the proteins' isoelectric points (pIs) using microscale solution isoelectric focusing. These fractions are then separated on narrow pH range two-dimensional gels approximately +/- 0.1 pH unit wider than the prefractionated pool. When this prefractionation approach is applied to complex mammalian proteomes, it improves resolution and spot recovery at high protein loads compared with use of parallel narrow pH range gels without prefractionation. The minimal cross-contamination between fractions allows quantitative comparisons in contrast to most alternative prefractionation methods. In addition, complementary data can be obtained by parallel analysis of the solubilized fraction on high-resolution large-pore-gradient one-dimensional gels followed by mass spectrometric identification to analyze proteins between 100 and approximately 500 kDa. Similarly, insoluble proteins can be analyzed using large-pore gels for large proteins and 10-12% one-dimensional sodium dodecyl sulfate (SDS) gels for smaller proteins. Together, these strategies should permit more reliable quantitative comparisons of complex mammalian proteomes where detection of at least 10000 protein spots is needed in order to analyze the majority of the unique protein species.  相似文献   

9.
Results are presented on the production of purified myocardial proteins from two-dimensional (2-D) gels. Proteins were fixed in a native condition using potassium acetate and then eluted into an aqueous solution. Homogeneous tropomyosin and myosin light chain fractions and a number of nonidentified myocardial proteins present on 2-D gels were obtained.  相似文献   

10.
11.
Affinity capillary electrophoresis (ACE) is a robust tool for the study of noncovalent biomolecular interactions and to determine the binding constants. It is advantageous due to the speed of analysis, the high and reproducible separation efficiencies, the low consumption of analytes, the ability to study several interactions at the same time, and to cover a wide range of affinity. The use of an ion trap-mass spectrometer as a sensitive and specific detector, coupled on-line with a classical UV detector, permits extracting simultaneously the electropherograms corresponding to each ionic species. The mass spectra, acquired by scanning the results of a first separation due to ACE, were assimilated into a virtual two-dimensional (2-D) gel. We developed a software application, which was designed to create and analyze these virtual 2-D gels. The validity of this new analytical tool for probing biomolecular interactions has been demonstrated on mixtures of antibiotics of the vancomycin group and several dipeptide substrates. Using the dynamic equilibrium affinity electrophoresis approach, we have shown that molecular components interacting with a low affinity are easily located on the virtual 2-D gels, and that binding constants and stoichiometry of the interactions can be assessed. As the binding constants derived from ACE-electrospray ionization-mass spectrometry (ESI-MS) are unreliable, they must only be determined with the UV detector.  相似文献   

12.
The strategies described here have permitted the synthesis of a series of 4-aminoquinoline antimalarials. Substantive improvements over previous syntheses include nucleophilic substitution with neat amine rather than in phenol, regioselective reductive alkylation to convert the terminal primary amine (12a–20a) on the diaminoalkane side chain to a diethylamino group, and purification by column chromatography with basic alumina. The 1H nmr spectra obtained after regioselective reductive alkylation with sodium borodeuteride (in comparison with sodium borohydride) demonstrated that this reductive alkylation proceeds via formation and subsequent reduction of the corresponding diamides in situ.  相似文献   

13.
The total protein of the mouse brain was fractionated into three fractions, supernatant, pellet extract and rest pellet suspension, by a procedure that avoids any loss of groups or classes of proteins. The supernatant proteins were resolved to a maximum by large-gel two-dimensional electrophoresis. Two-dimensional patterns from ten individual mice of the commonly used inbred strain C57BL/6 (species: Mus musculus) were prepared. The master pattern was subjected to densitometry, computer-assisted image analysis and treatment with our spot detection program. The resulting two-dimensional pattern, a standard pattern for mouse brain supernatant proteins, was divided into 40 squares, calibrated, and specified by providing each spot with a number. The complete pattern and each of the 40 squares are shown in our homepage (http://www.charite.de/ humangenetik). The standard pattern comprises 8767 protein spots. To identify the proteins known so far in the brain fraction investigated, a first set of 200 spots was analyzed by matrix-assisted laser desorption/ionization - mass spectrometry (MALDI-MS) after in-gel digestion. By screening protein databases 115 spots were identified; by extending the analysis to selected, genetically variant protein spots, 166 spots (including some spot series) were identified in total. This number was increased to 331 by adding protein spots identified indirectly by a genetic approach. By comparing the two-dimensional patterns from C57BL/6 mice with those of another mouse species (Mus spretus), more than 1000 genetically variant spots were detected. The genetic analysis allowed us to recognize spot families, i.e., protein spots that represent the same protein but that are post-translationally modified. If some members of the family were identified, the whole family was considered as being identified. Spot families were investigated in more detail, and interpreted as the result of protein modification or degradation. Genetic analysis led to the interesting finding that the size of spot families, i.e., the extent of modification or degradation of a protein, can be genetically determined. The investigation presented is a first step towards a systematic analysis of the proteome of the mouse. Proteome analysis was shown to become more efficient, and, at the same time, linked to the genome, by combining protein analytical and genetic methods.  相似文献   

14.
In this paper, alternative techniques for the measurement of porosity based upon Gibbs-Thomson equation are reviewed and discussed. The paper focuses on thermoporosimetry trying to demonstrate that it is a valuable tool relevant to sol-gel science. A detailed calibration procedure using sol-gel derived silica gels is presented for acetone. It is then shown that it is possible to predict the behaviour of confined liquids related to a given chemical family. Finally two selected examples illustrate the great potential of this technique for the study of gels networks and cross-linking. Perspectives concerning the study of organic-inorganic hybrids materials are finally given.  相似文献   

15.
We propose a suite of novel algorithms for image analysis of protein expression images obtained from 2-D electrophoresis. These algorithms are a segmentation algorithm for protein spot identification, and an algorithm for matching protein spots from two corresponding images for differential expression study. The proposed segmentation algorithm employs the watershed transformation, k-means analysis, and distance transform to locate the centroids and to extract the regions of the proteins spots. The proposed spot matching algorithm is an integration of the hierarchical-based and optimization-based methods. The hierarchical method is first used to find corresponding pairs of protein spots satisfying the local cross-correlation and overlapping constraints. The matching energy function based on local structure similarity, image similarity, and spatial constraints is then formulated and optimized. Our new algorithm suite has been extensively tested on synthetic and actual 2-D gel images from various biological experiments, and in quantitative comparisons with ImageMaster2D Platinum the proposed algorithms exhibit better spot detection and spot matching.  相似文献   

16.
The characteristics of protein detection and quantitation with SYPRO Ruby protein gel stain in one- and two-dimensional polyacrylamide gels were evaluated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of three different purified recombinant proteins showed that the limits of detection were comparable to the limits of detection with ammoniacal silver staining and were protein-specific, ranging from 0.5 to 5 ng. The linearity of the relationship between protein level and SYPRO Ruby staining intensity also depended on the individual protein, with observed linear dynamic ranges of 200-, 500-, and, 1000-fold for proteins analyzed by SDS-PAGE. SYPRO Ruby protein gel stain was also evaluated in two-dimensional electrophoretic (2-DE) analysis of Escherichia coli proteins. The experiment involved analysis of replicates of the same sample as well as dilution of the sample from 0.5 to 50 nug total protein across gels. In addition to validating the 2-DE system itself, the experiment was used to evaluate three different image analysis programs: Z3 (Compugen), Progenesis (Nonlinear Dynamics), and PDQuest (Bio-Rad). In each program, we analyzed the 2-DE images with respect to sensitivity and reproducibility of overall protein spot detection, as well as linearity of response for 20 representative proteins of different molecular weights and pI. Across all three programs, coefficients of variation (CV) in total number of spots detected among replicate gels ranged from 4 to 11%. For the 20 representative proteins, spot quantitation was also comparable with CVs for gel-to-gel reproducibility ranging from 3 to 33%. Using Progenesis and PDQuest, a 1000-fold linear dynamic range of SYPRO Ruby was demonstrated with a single known protein. These two programs were more suitable than Z3 for examining individual protein spot quantity across a series of gels and gave comparable results.  相似文献   

17.
Principal component analysis was applied to two-dimensional (2-D) gel electrophoresis patterns, obtained in various phases of infection. Untreated controls could be satisfactorily differentiated from patterns after infection on days 3 and 7 whereas day 10 of infection was grouped with the controls. Comparison of host cellular protein patterns could help to classify in vivo developing infection without requiring any so-called immune marker functions. Immunoaffinity separation of infected cells treated with detergent, followed by 2-D electrophoresis of negative as well as positive eluates, did not reveal radiolabeled bacterial protein antigens.  相似文献   

18.
The benefits of defining common spot boundaries when several gels from 2-DE are compared and analyzed have lately been stressed by both commercial software producers and users of this software. Though the importance of common spot boundaries is clearly stated, few reports exist that target this issue explicitly. In this study a method for defining common spots boundaries is developed, called the spot density method. The method consists of the following steps: segmentation and spot identification on each individual gel, transferring the spot-center coordinates for all gels onto a single new gel, collecting spot centers clustered together in the new gel and finally assigning pixels and new spot boundaries based on the spots in each cluster. The method is compared to a synthetic gel approach, and validated by visual inspection of three representative areas in the gels. The gel images need to be aligned prior to segmentation and spot identification, but the method can be used regardless of the choice of segmentation procedure. This makes the method an easy extension to existing methods for spot identification and matching. Conclusions based on the visual inspection are that the spot density method identifies partly overlapping spots and low-intensity spots better than the synthetic gel approach.  相似文献   

19.
The fluorescence of proteins stained with Deep Purple and SYPRO Ruby was measured over a time course of UV transillumination to determine the relative photostability of each stain. Mean spot fluorescence (n = 200 matched spots) in gels stained with Deep Purple decreased 27% following 2 min of UV transillumination, compared to SYPRO Ruby, which decreased 17%. After 19 min, an 83% decrease in Deep Purple fluorescence was observed, compared to 44% for SYPRO Ruby. By interpolation, the half-life of Deep Purple fluorescence was estimated to be approximately 6 min. The half-life of SYPRO Ruby fluorescence was not reached during the 19 min time course. Further, differential staining of proteins was observed in gels stained with Deep Purple and SYPRO Ruby as compared to colloidal Coomassie Brilliant Blue and silver staining.  相似文献   

20.
Oh-Ishi M  Satoh M  Maeda T 《Electrophoresis》2000,21(9):1653-1669
A two-dimensional gel electrophoresis (2-DE) method that uses an agarose isoelectric focusing (IEF) gel in the first dimension (agarose 2-DE) was compared with an immobilized pH gradient 2-DE method (IPG-Dalt). The former method was shown to produce significant improvements in the 2-D electrophoretic separation of high molecular mass proteins larger than 150 kDa, up to 500 kDa, and to have a higher loading capacity, as much as 1.5 mg proteins in total for micropreparative runs. The extraction medium found best in this study for agarose 2-DE of mammal tissues was 6 M urea, 1 M thiourea, 0.5% 2-mercaptoethanol, protease inhibitor cocktail (Complete Mini EDTA-free), 1% Triton X-100 and 3% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Trichloroacetic acid (TCA) treatment of the agarose gel after IEF is to be carefully weighed beforehand, because some high molecular mass proteins were less likely to enter the second-dimensional polyacrylamide gel after TCA fixation, and proteins such as mouse skeletal muscle actin gave pseudospots in the agarose 2-DE patterns without TCA fixation. As a good compromise we suggest fixation of proteins in the agarose gel with TCA for one hour or less. The first-dimensional agarose IEF gel containing Pharmalyte as a carrier ampholyte was 180 mm in length and 2.5-4.8 mm in diameter. The gel diameter was shown to determine the loading capacity of the agarose 2-DE, and 1.5 mg liver proteins in total were successfully separated by the use of a 4.8 mm diameter agarose gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号