首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
方程x_0x=p(y+y_0)的几何意义   总被引:1,自引:0,他引:1  
1方程x_0x=P(y+y_0)是抛物线x~2=2py(p>0)在点P(x_0,y_0)处的切线方程在现行高中数学教材中,利用导数的意义,证明了如下性质:性质1 P(x_0,y_0)是抛物线x~2=2py(p>0)上一点,则抛物线过点P的切线方程为x_0x= p(y_0+y).  相似文献   

2.
学生解二元二次方程组x y 1=0① x~2 4y~2=8②一般先从①式得y=-x-1③,代入②得x_1=-2,x_2=2/5。再将x_1,x_2代入③或①式得y_1=1,y_2=-7/6。于是原方程组的两个解是  相似文献   

3.
这是教材上的一道习题: 求经过两条曲线x~2 y~2 3x-y=0①和3x~2 3y~2 2x y=0②交点的直线方程。启蒙阶段,可先解交点,后求直线方程: 由①×3-②,可得7x-4y=0③又由①、②联立解之得:x_1=0,y_1=0;x_2=-4/13,y=-7/13。由此得所求的直线方程:7x-4y=0 ④比较③、④,发现由③到④是条回路,于是回头研究式③为所求的道理;若(x_1、y_1)、(x_2、y_2)是两曲线的交点,则应同时满足①、②两式,从而满足③式。即方程③表示的直线过两曲线的交点,又因这样的直线只有一条,故直线③为所求。  相似文献   

4.
我们知道,经过圆的x~2+y~2=R~2上任意一点P(x_0,y_0)的切线方程为:x_0x+y_0y=R~2记住并直接利用这个公式,能加快解题速度,收到事半功倍的效果,它的证明较易,本文从略。下面举一例说明。例:求过点(3,4)且到原点距离为5的直线方程。解;依题意知:所求直线到原点距离为5,因此,此直线可看成是过圆x~2+y~2=25上一点P(3,4)的一条切线,故此直线方程为: 3x+4y=25 细心的同学会发问:如果这点P(x_0,y_0)不在圆上,那么方程:x_0x+y_0y=R~2的几何意义又是什么呢? 下面着重谈谈这个问题: 首先,我们设P(x_0,y_0)在定圆x~2+y~2  相似文献   

5.
在三角中,某些问题如我们能充分注意到它们的几何背景,并藉助于解析几何的有关知识,往往可以得到较为简洁的解法。本文列举数例,以资说明。例1 已知 cosa-cosβ=1/2,sina-sinβ=-1/3,求cos(a+β)。解:设x_1=cosa,y_1=sina;x_2=cosβ,y_2=sinβ。则可知点A(x_1,y_1),B(x_2,y_2)在单位圆x~2+y~2=1上。(图一) 又由(y_2-ly_1)/(x_2+x_1)=(sinβ-sina)/(cosβ-cosa)=(1/3)/(-1/2)=-2/3玄j 故直线AB的斜率为-2/3。设直线AB的方程为y=-2/3x+b,将此代入x~2+y~2=1并整理得13x~2-12bx+9(b~3-1)  相似文献   

6.
众所周知,要求经过一般二次曲线C: Ax~2+Bxy+Cy~2+Dx+Ey+F=0上一点p(x_1,y_1)的切线方程,可以应用如下的代换法则: (1) 用x_1x和y_1y分别代换方程中的x~2和y~2:  相似文献   

7.
王建荣 《中学生数学》2014,(1):F0004-F0004
<正>题目点A为y轴正半轴上一点,A、B两点关于x轴对称,过点A任作直线交抛物线y=2/3x2于P、Q两点.(1)求证:∠ABP=∠ABQ.(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式(如图).文[1]利用轴对称知识及函数与方程思想进行解答,应该肯定解法很全新,笔者本着一切从学生所掌握的基本知识出发来解答,从三角形角平分线定理入手,解答比较通俗简单,供同学们参考.(1)证明设点A坐标为(0,a),P、Q坐标分别为(x_1,y_1)、(x_2,y_2),令直线PQ方程:y=kx+a,再联立y=2/3x2于P、Q两点.(1)求证:∠ABP=∠ABQ.(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式(如图).文[1]利用轴对称知识及函数与方程思想进行解答,应该肯定解法很全新,笔者本着一切从学生所掌握的基本知识出发来解答,从三角形角平分线定理入手,解答比较通俗简单,供同学们参考.(1)证明设点A坐标为(0,a),P、Q坐标分别为(x_1,y_1)、(x_2,y_2),令直线PQ方程:y=kx+a,再联立y=2/3x2解得2/3x2解得2/3x2-kx-a=0,则x_1x_2=-3/2a(即a=-2/3x_1x_2),y_1=2/3x_12-kx-a=0,则x_1x_2=-3/2a(即a=-2/3x_1x_2),y_1=2/3x_12、  相似文献   

8.
设圆G的方程为x~2 y~2=γ~2,则经过圆上一点M(x_0,y_0)的切线的方程是x_0x y_0y=γ~2,从这条切线的唯一性出发,可得上述命题的三个逆命题:(1)若点M(x_0,y_0)在圆G上,则直线l与圆G相切;(2)若直线l与圆G相切,则点M是切点;(3)若圆心在原点的圆与直线l切于M,则圆为圆G.例1 (课本《解析几何P69第12题)判断直线3x 4y=50与圆x~2 y~2=100  相似文献   

9.
求二次函数型的极值常可运用“判别式法”(以下简称“△法”)。但运用“△法”求极值可能产生增解或失解,学生在解题时常常忽略这个问题而出现一些错误,下面略举几例说明: 例1 求函数y=2-(4/x)-3x的极值(x>0) 错解函数可变形为3x~2+(y-2)x+4=0 (1) ∵x∈R ∴△=(y-2)~2-4·3·4≥0 解之得 y≤2-(4(3)~(1/2))或y≥2+4(4)3~(1/2)。简析:y极小=2+4(3)~(1/2)了就是用“△法”产生不符合题意的答案,事实上,当y=2+4(3)~(1/2)时,方程(1)化为3x~2+4(3)~(1/2)x+4=0(3~(1/2)x+2)~2x=-(2(3)~(1/2))/3<0。  相似文献   

10.
例题已知抛物线x~2=2py上的不同两点A、B的横坐标恰好是关于x的方程x~2 6x 4q =0(q为常数)的两个实根,求直线AB的方程.解设A(x_1,y_1),B(x_2,y_2),则x_1~2=2py_1,x_2~2=2py2.∵A,B的横坐标是方程x~2 6x 4q=0的两个实根,  相似文献   

11.
本文介绍解析几何中把参数方程化为普通方程的一些常用方法。 (一)代入法通过参数方程中的一个方程求出参数的表达式,把它代入另一方程,从而消去参数,化为普通方程。例1.化下列t为参数的方程为普通方程 x=at~2+2a (1) y=at~3+2at (2) 解:由(2),得y=t(at~2+2a)(3) 把(1)代入(3),得y=tx 即 t=y/x. (4) 把(4)代入(1),得x=ay~2/x~2+2a. 整理后,得ay~2=x~3-2ax~2. (二)同解方程变形法运用同解方程组的性质,消去参数。  相似文献   

12.
已知平面上一点M(x_0,y_0)以及二次曲线C: Ax~2+Bxy+Cy~2+Dx+Ey+F=0 (1)简记为G(x,y)=0。又方程Ax_o+B(y_0+x_0y)/2+Cy_0+D(x+x_0)/2+E(y+y_0)/2+F=0简记为 G'_(x_0,y_0)(x,y)=0 (2)显然有① G'_(x_0,y_0)(x,y)=G'_(x,y)(x_0,y_0) ② G'_(x_0,y_0)(x_0,y_0)=G(x_0,y_0)我们有如下众所周知的结论1)当M(x_0,y_0)在曲线(1)上时,方程(2)表  相似文献   

13.
在化直线参数方程一般式{x=x_0 at y=y_0 bt}(简称方程(Ⅰ))为标准式{x=x_0 tcosa y=y_0 tsina}(简称方程(Ⅱ))的问题上,存在一些模糊观念与错误作法,甚至在一些中学数学书刊与复习资料上也时有所见。如文[1]认为当a~2 b~2≠1时,方程(Ⅰ)中t不具有几何意义,而当a~2 b~2=1时,方程(Ⅰ)中t的几何意义与方程  相似文献   

14.
<正>2019年全国3卷理科数学第21题第1问:已知曲线C:y=x2/2,D为y=-1/2上一动点,过D作曲线C的两条切线,切点分别为A、B.(1)证明直线AB过定点.证明设A (x_1,y_1),B (x_2,y_2),D (n,-1/2).∵y=x2/2,D为y=-1/2上一动点,过D作曲线C的两条切线,切点分别为A、B.(1)证明直线AB过定点.证明设A (x_1,y_1),B (x_2,y_2),D (n,-1/2).∵y=x2/2,故y′=x,则切线DA方程为y-y_1=x_1(x-x_1)切线DB方程为y-y_2=x_2(x-x_2),  相似文献   

15.
题目如图,已知一个圆的圆心为坐标原点,半径为2.从这个圆上任意一点P向x轴作垂线段PP′,求线段PP′中点M的轨迹.解设点M的坐标为(x,y,),点P的坐标为(x_0,y_0),则x=x_0,y=((y_0)/2).因为P(x_0,y_0)在圆x~2  相似文献   

16.
过一点切线方程的另一种初等求法   总被引:1,自引:1,他引:0  
先看一个具体问题:求过椭圆x42 y32=1上一点P(1,23)的切线方程.在中学阶段解决此类问题,一般采用Δ方法,即设切线方程为y-32=k(x-1),代入x24 y32=1,整理得关于x的一元二次方程:(3 4k2)x2 (-8k2 12k)x 4k2-12k-3=0,通过判别式Δ=(-8k2 12k)2-4(3 4k2)(4k2-12k-3)=0,解得k=-21,故所求切线方程为x 2y-4=0.这种方法思路直,用到知识少,学生容易掌握,不足之处是运算量偏大,出错率高.那么能否给出一种求解思路简单,而运算量又较小的方法呢?命题:P(x0,y0)为圆锥曲线C:f(x,y)=0上一点,则曲线C上过P点的切线方程为f(x,y)-f(2x0-x,2y0-y)=0(*)证明:因…  相似文献   

17.
题1已知函数y=kx与.y=x~2+2 (x≥0)的图象相交于不同两点A(x_1,y_1), B(x_2,y_2),l_1,l_2分别是y=x~2+2(x≥0)的图象在A,B两点的切线,M,N分别是l_1,l_2与x轴的交点,P为l_1与l_2的交点. (1)求证:直线l_1、y=kx、l_2的斜率成等差数列;  相似文献   

18.
给出一类三参数的四次Thue方程x~4-4sx~3y-(2ab+4(a+b)s)x~2y~2-4absxy~3+a~2b~2y~4=1,s≥1,当a=2,b=1时的所有整数解(x,y).  相似文献   

19.
关于不定方程 x~2-Dy~2=4在两种特殊情形下的最小解   总被引:4,自引:0,他引:4  
在数论方面的专著中,对不定方程(1) x~2-Dy~2=4 (D>0且非完全平方数)作了重要的介绍.我们知道,方程(1)恒可解.若已知 x_0,y_0为(1)之最小正整数解,则(1)的一切解x,y 可由下式  相似文献   

20.
本文通过举例说明平均值换元在解一类方程中的妙用。 例1 解方程 (x~2 2x-2)(x_2 4x 6)=3(x 4)~2 解 设t=1/a[(x~2 2x-2) (x~2 4x 6)]=x~2 3x 2,则原方程化为[(t-(x 4)]·[t (x-4)]-3(x 4)=0 t~2-4(x 4)~2=0,即[t 2(x 4)][t-2(x 4)]=0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号