首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high resolution vibration-rotation spectrum of deuterated monobromoacetylene (DCCBr) has been recorded with a Bruker IFS 120 Fourier Spectrometer in the wavenumber region 1700-2800 cm−1, which covers the C-D and CC stretching fundamental (ν1 and ν2, respectively) and the CC and C-Br stretching vibrational combination (ν2 + ν3) band systems. The analysis of the spectrum provides accurate vibrational term values and rotational constant for 20 vibration-rotation bands for both isotopic species, DCC79Br and DCC81Br.  相似文献   

2.
The equilibrium structure of silyl fluoride, SiH3F, has been reinvestigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, and inclusion of core correlation as well as relativistic corrections (r(Si-F) = 1.5911 Å, r(Si-H) = 1.4695 Å, and ∠FSiH = 108.30°). A semi-experimental equilibrium structure has been determined based on the available rotational constants for the various isotopic species of silyl fluoride (28SiH3F, 28SiD3F, 29SiH3F, 29SiD3F, 30SiH3F, 30SiD3F, 28SiH2DF, and 28SiHD2F) together with computed vibrational corrections to the rotational constants (r(Si-F) = 1.59048(6) Å, r(Si-H) = 1.46948(9) Å, and ∠FSiH = 108.304(9)°).  相似文献   

3.
The infrared spectrum of propynal, C2HCHO, is studied at high resolution (0.003 cm−1) in the range 570-640 cm−1. The relatively intense ν11 (CC-H out-of-plane bend, 693 cm−1) and ν7 (CC-H in-plane bend, 651 cm−1) fundamental bands are linked by a strong a-type Coriolis interaction. The somewhat weaker ν8 (CCO in-plane bend, 614 cm−1) fundamental has a significant Fermi-type interaction with the “dark” background state 3ν9 (∼618 cm−1). About 1400 lines are assigned and analyzed in terms of a four-state fit in order to obtain accurate band origins, rotational and centrifugal distortion parameters, and Fermi and Coriolis interaction parameters. This represents the first systematic high-resolution infrared study of propynal.  相似文献   

4.
The absorption spectrum of nitrous oxide (N2O) has been recorded by Intracavity Laser Absorption Spectroscopy between 12,760 and 12,900 cm−1. The rotational analysis led to an improved determination of rovibrational parameters of the 6ν3 and 6ν322 bands of 14N216O. The high J rotational levels of the (0 0 06) and (0 1 16) upper states were found perturbed by an anharmonic interaction. Line intensity values of the 6ν3 band are provided and the main effective dipole moment parameter has been determined.  相似文献   

5.
The rotational spectrum of argon trifluoroacetonitrile complex has been studied by pulsed-nozzle, Fourier transform microwave spectroscopy. Both a-type and b-type transitions have been observed. The rotational constants are A = 3053.0903(2) MHz, B = 1039.9570(2) MHz, and C = 895.5788(1) MHz. The 14N nuclear quadrupole hyperfine components of the rotational transitions have been resolved, the 14N nuclear quadrupole coupling constants are χaa = 1.746(1) MHz, and χbb − χcc = −6.426(2) MHz. The complex is T-shaped, with the argon atom located 3.73 Å from the center of mass of the trifluoroacetonitrile molecule.  相似文献   

6.
The pure rotational spectrum of the TiCl+ ion in its X3Φr ground state has been measured in the frequency range 323-424 GHz, using a combination of direct absorption and velocity modulation techniques. The ion was created in an AC discharge of TiCl4 and argon. Ten, eleven, and nine rotational transitions were recorded for the 48Ti35Cl+, 48Ti37Cl+, and 46Ti35Cl+ isotopomers, respectively; fine structure splittings were resolved in every transition. The rotational fine structure pattern was irregular with the Ω = 4 component lying in between the Ω = 2 and 3 lines. This result is consistent with the presence of a nearby 3Δr state, which perturbs the Ω = 2 and 3 sub-levels, shifting their energies relative to the Ω = 4 component. The data for each isotopomer were analyzed in a global fit, and rotational and fine structure parameters were determined. The value of the spin-spin constant was comparable to that of the spin-orbit parameter, indicating a large second-order spin-orbit contribution to this interaction. The bond length established for TiCl+, r0 = 2.18879 (7) Å, is significantly shorter than that of TiCl, which has r0 = 2.26749 (4) Å. The shorter bond length likely results from a Ti2+Cl structure in the ion relative to the neutral, which is thought to be represented by a Ti+Cl configuration. The higher charge on the titanium atom shortens the bond.  相似文献   

7.
The visible electronic spectrum of AuO has been recorded at rotational resolution using intracavity laser absorption spectroscopy. Five vibrational bands have been analyzed and assigned as the (0, 0), (1, 0), (2, 0), (3, 0), and (4, 0) bands of the b4Π3/2-X2Π3/2 transition of AuO. The molecular parameters for the newly identified b4Π3/2 state are presented.  相似文献   

8.
The quadratic, cubic and semi-diagonal quartic force field of ethyl cyanide has been calculated at the B3LYP level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. This structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of quadruple-ζ quality and a core correlation correction. The empirical structures are also determined and their accuracy is discussed. The potential barrier V3 hindering internal rotation of the methyl group has been calculated from 23 rotational transitions of CH3CH2C15N which were found split into doublets, giving V3 = 3074(27) cal mol−1.  相似文献   

9.
The ground state rotational spectrum of the 14NF3 and 15NF3 isotopic species of nitrogen fluoride has been observed in the ∼450-810 GHz frequency range. This investigation allowed us to improve the rotational parameters for both isotopologues. In particular, for the first time the K = 3 line splitting parameter and the sextic centrifugal distortion constants have been determined for 15NF3.  相似文献   

10.
The long wavelength end of the electronic spectrum of CuCl2, between 636 and 660 nm, has been recorded in the gas phase by laser-excitation spectroscopy using a sample prepared at low temperatures (ca. 10 K) in a free-jet expansion. Under these conditions, it is possible to resolve vibrational, rotational, and even Cu hyperfine structure. The (0, 0) band of the E2Πu-X2Πg transition has been identified with an origin at 15546.286(3) cm−1 for 63Cu35Cl2. The observation and analysis of bands involving vibrationally excited levels has allowed the determination of all three vibrational intervals for the E2Πu state (ν1 = 335.88 cm−1, ν2 = 112.42 cm−1, and ν3 = 482.17 cm−1, 63Cu35Cl2). In addition, two other, unrelated transitions have been identified in the same narrow wavelength region. This, combined with the observation of local perturbations of the rotational structure in various bands, reveals the presence of other closely lying electronic states in the same energy region.  相似文献   

11.
The gas phase infrared emission spectrum of the A3Σ-X3Π electronic transition of SiC has been observed using a high resolution Fourier transform spectrometer. Three bands ν′ − ν″ = 0-1, 0-0, and 1-0 have been observed in the 2770, 3723, and 4578 cm−1 regions, where the 0-1 and 0-0 bands were observed for the first time. The SiC radical was generated by a dc discharge in a flowing mixture of hexamethyl disilane [(CH3)6Si2] and He. A total of 1074 rotational transitions assigned to the 0-1, 0-0, and 1-0 bands have been combined in a simultaneous analysis with previously reported pure rotational data to determine the molecular constants for SiC in the two electronic states. The principal equilibrium molecular constants for the A3Σ state are: Be = 0.6181195(18) cm−1, αe = 0.0051921(20) cm−1, re = 1.8020884(26) Å, and Te = 3773.31(17) cm−1, with one standard deviation given in parentheses. The effect of a perturbation was recognized between the ν = 4 level of X3Π and the ν = 0 level of A3Σ, and the analysis was carried out to determine the interaction parameter between the two states.  相似文献   

12.
The rotational spectrum of methyl phosphonic difluoride has been reinvestigated using a pulsed-molecular-beam Fabry-Perot cavity microwave spectrometer. The enhanced resolution of the Fourier transform microwave (FTMW) spectrometer (compared to the original work done in a conventional Stark spectrometer) has allowed the measurement of small A-E splittings of many of the rotational transitions caused by the internal rotation of the methyl top. The barrier to internal rotation, V3 = 676 (25) cm−1, has been determined experimentally from the A-E splittings of the rotational transitions in the ground vibrational state. This barrier height is substantially lower than the previously determined value for the barrier, which was 1252 (14) cm−1. High-level ab initio calculations at the MP2/aug-cc-pVTZ level predict a barrier to internal rotation of 638 cm−1, in agreement with the experimentally determined value found here. The high sensitivity of the FTMW spectrometer has also permitted the measurement of the 13C and 18O isotopomers in natural abundance. The addition of these two isotopomers has allowed an improved structural determination.  相似文献   

13.
The microwave spectra of two isotopic species of acetyl isocyanate, 13CH3C(O)NCO and CD3C(O)NCO, were observed in order to determine the ro structure and confirmation of the molecular conformation. These isotopic species were prepared by reacting acetyl-2-13C-chloride or acetyl-d3 chloride with sliver cyanate. The rotational spectra of A-level in 26.5-60.0 GHz region have been observed by Stark-modulated microwave spectrometer. Some absorption lines in E-level were observed in 13CH3C(O)NCO. The rotational constants in the ground vibrational state were determined to be A = 10654.8(18), B = 2177.32(2), and C = 1827.65(2) MHz for 13CH3C(O)NCO, and A = 9713.90(6), B = 2042.04(2), and C = 1722.78(2) MHz for CD3C(O)NCO, respectively. The values of ΔI (= Ic − Ia − Ib) of the 13C species (−3.024(13) uÅ2) and the d3 species (−6.163(3) uÅ2) indicate that the molecule has Cs symmetry. The rs coordinates of the carbon atom in the methyl group were determined to be |a| = 2.183(3), |b| = 0.706(9), and |c| = 0.080(87) Å. The determined coordinates were in agreement with those calculated for the cis form, in which the carbonyl group is eclipsed by the NCO group. The six structural parameters of the cis form were adjusted by fitting to the observed rotational constants. The observed rotational constants of the cis form were in better agreement with those calculated using the QCISD/6-31G (d, p) level rather than those calculated using the MP2/6-31G (d, p) level. The barrier of internal rotation of the methyl group was determined as 4.283(16) kJ mol−1 in 13CH3C(O)NCO. The structural tendencies and the relationship between RNC and 14N quadrupole coupling constants (χcc) were discussed.  相似文献   

14.
The pure rotational transitions of HN2+ and DN2+ in the first excited vibrational states for all the fundamental vibrational modes have been observed in the range of 300-750 GHz. The molecular constants determined are much more accurate compared with those obtained from the infrared spectroscopy. The equilibrium rotational constants, Be = 46832.45 (71) MHz for HN2+ and Be = 38708.38 (58) MHz for DN2+, have been determined by correcting for the higher-order vibration-rotation interaction effects, γij, obtained by an infrared investigation. The equilibrium bond lengths are derived from these equilibrium rotational constants: re(H-N) = 1.03460 (14) Å and re (N-N) = 1.092698 (26) Å.  相似文献   

15.
The pure rotational spectrum of the molecular ion TiF+ in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF+ was made in an AC discharge from a mixture of TiCl4, F2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl+, which is perturbed in the ground state. The data were fit with a case (a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF+, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF+ relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti2+F configuration. A similar decrease in bond length was found for TiCl+ relative to TiCl.  相似文献   

16.
The analysis of the rotational spectrum of HNO3 has been extended to include the υ8 = υ9 = 1 state at 1205.7 cm−1 and the υ6 = υ7 = 1 state at 1223.4 cm−1. Based on 78-519 GHz data, the assignments in the 8191 vibrational state have been significantly expanded from the previously reported microwave measurements [T.M. Goyette, F.C. De Lucia, J. Mol. Spectrosc. 139 (1990) 241-243]. A new microwave analysis is also reported for the 6171 vibrational state. A simultaneous analysis takes into account the localized ΔKa = ±2 Fermi resonances between the vibrational states, describes the torsional splitting of 3.3 and 1.4 MHz for the 8191 and 6171 states respectively, and fits to experimental accuracy over 1500 rotational transition frequencies that extend up to J = 59. Infrared energy levels [A. Perrin, J.-M. Flaud, F. Keller, A. Goldman, R. D. Blatherwick, F. J. Murcray, C. P. Rinsland, J. Mol. Spectrosc. 194 (1999) 113-123] were also included in the analysis and fit to experimental accuracy. Measurement of strongly perturbed transitions in each vibrational state provide a determination of the band origin difference of 17.733184(17) cm−1. The rotational constants agree well with those predicted by vibrational-rotational constants of the fundamental modes. Furthermore, the analysis will provide a very accurate simulation of the infrared spectrum of HNO3 in the 8.3 μm region.  相似文献   

17.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

18.
The rotational spectra of 34SO2F2 and S18O16OF2 have been measured in their ground vibrational state between 9 and 110 GHz. Accurate rotational constants have been derived. Various experimental structures including the average structure have been determined. The ab initio structure has been calculated at the CCSD(T) level of theory. The different structures are compared and the best equilibrium structure is the ab initio structure: re(SO)=1.401 (3) Å, re(SF)=1.532 (3) Å, ∠e(OSO)=124.91(20)°, ∠e(FSF)=95.53 (20)°.  相似文献   

19.
The rotational spectra of the ground vibrational state and the ν9 = 1 torsional state have been reinvestigated and accurate spectroscopic constants have been determined. The torsional frequency, ν9 = 70(15) cm−1, has been determined by relative intensity measurements. The assignment of the infrared spectrum has been slightly revised and an accurate harmonic force field has been calculated. The equilibrium structure has been determined using different, complementary methods: experimental, semi-experimental and ab initio, leading to r(NN) = 1.870(2) Å, in particular.  相似文献   

20.
The pure rotational spectrum of TiS in its X3Δr ground state has been measured using millimeter-wave direct-absorption techniques in the frequency range of 313-425 GHz. This free radical was created by the reaction of titanium vapor, produced in a high-temperature Broida-type oven, with H2S. Eight to ten rotational transitions were recorded for the main titanium isotopologue, 48TiS, in the v = 0 and v = 1 levels, as well as for the v = 0 state of 46TiS, observed in natural abundance (48Ti:46Ti = 74:8). All three Ω components were observed in almost every recorded transition, with no evidence for lambda-doubling. The data were fit with a Hund’s case(a) Hamiltonian, and rotational, spin-orbit, and spin-spin constants were determined, as well as equilibrium parameters for 48TiS. Relatively few fine structure parameters were needed for the analysis of TiS (A, AD, and λ), unlike other 3d metal species. The rotational pattern of the three fine structure components suggests the presence of a nearby excited 1Δ state, lying ∼3000 cm−1 higher in energy. From the equilibrium parameters, the dissociation energy for TiS was estimated to be ∼5.1 eV, in reasonable agreement with past thermochemical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号