首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature effect on the synergic extraction of Eu(III) by thenoyltrifluoroacetone (HTTA) in the presence of 2,2-bipyridyl(bipyr) and 1,10-phenanthroline (phen) from sodium acetate buffer solution at pH 4.20 has been investigated. Extractions were carried out at 15, 25, and 35°C. It was observed that the increasing temperature favours the extraction of Eu(III) by HTTA alone while the reverse is true for synergic extractions. The extraction data indicate the formation of synergic adducts containing only one molecule of the bidentate amine i.e. Eu(TTA)3. B where B=bipyr or phen. The synergic reaction is favoured by the enthalpy changes alone. Thermodynamic parameters suggest a mechanism for the synergic extraction which involves complex formation with an increase or expansion of the coordination number of the central metal atom. Larger synergic and enthalpy changes observed for phen as compared to bipyr are probably due to the cis position of its N-atoms readily available for chelate ring formation.  相似文献   

2.
一、配合物合成及溶解性 配合物按文献[1]的方法合成,为微红色粉末,易溶于水、DMF、DMSO、乙醚、甲醇、乙醇、丙酮、氯仿,不溶于甲苯、二甲苯、CCl_4。 二、分析方法及实验条件 分析方法和实验条件同文献[1];燃烧能的测定仪器、实验条件,量热计当量计算和热交换校正,燃烧焓的换算和生成热的计算同文献[2]。 结果与讨论 一、配合物的性质 1.组成分析 元素分析实验值(%):Eu27.26,C20.07,H3.76,N14.85;计算值(%):Eu27.27,C19.40,H3.80,N15.08。 2.熔点及X-射线粉末衍射分析 配合物熔点为102.0~102.5℃;配合物及硝酸铕水合物  相似文献   

3.
Complexation of europium(III) with 2,2′-dipyridyl in Eu(An)3-2,2′-dipyridyl-ethyl acetate systems, where An is acetylacetonate, trichloroacetate, or trifluoroacetate ions, was studied by spectrophotometric methods. The stability constants of the complexes at different temperatures were determined, and Gibbs energy, enthalpy, and entropy changes in complexation were calculated. The influence of the initial organic ligands on complexation was elucidated.  相似文献   

4.
The enthalpies of solution in water for five new light rare earth ternary complexes RE(Gly)4Im(ClO4)3 2H2O (RE = La, Pr, Nd, Sm, Eu; Gly‐glycine; Im‐imidazole) were measured by means of a Calvet microcalorimeter. The empirical formula of enthalpy of solution (ΔsolH), relative apparent molar enthalpy (πLi), relative partial molar enthalpy (Li) and enthalpy of dilution (ΔdllH1,2) were drawn up by the data of enthalpies of solution of these complexes. From three plots of the values of standard enthalpy of solution Δsol H?, πLi, Li) versus the values of ionic radius (r) of the light rare earth elements, the grouping effect of lanthanide was observed, showing that the coordination bond between rare earth ion and ligand possesses a certain extent of the property of a covalent bond. The standard enthalpies of solution in water of similar complexes, Ce(Gly)4Im(ClO4)3.2H2O were estimated according to the plot of ΔsolH?, versus r.  相似文献   

5.
3‐Nitro‐1,2,4‐triazol‐5‐one (NTO) europium complex of [Eu(NTO)3(H2O)5]·5H2O was synthesized by mixing the aqueous solution of lithium 3‐nitro‐1,2,4‐triazol‐5‐onate and the dilute nitric acid solution of europium oxide. The title complex was characterized by elemental analysis and IR spectra. The single crystal structure was determined by a four‐circle x‐ray diffractometer. The title complex is monoclinic with space group P21/n and unit cell parameters of a = 1.8720(2) nm, b = 0.6548(3) nm, c = 1.9323(3) nm and β = 95.33(1)°. The coordination geometry around the europium ion is a distorted dodecahedron and there are five crystalline water molecules to form the stable structure of the crystal. From measurements of the enthalpy of solution in water at 298.15 K, the standard enthalpy of formation, lattice enthalpy and lattice energy have been determined as ‐(3798.6 ± 3.7), ?4488.4 and ?4452.4 kJ·mol?;1, respectively.  相似文献   

6.
Thermodynamical data of rare earth complexes with amino acid are important for engineering chemistry and fundamental chemistry. However, they have rarely been reported. In this work, a series of crystalline complexes of rare earth perchlorate coordinated with glutamic acid have been synthesized in water medium, and their thermodynamical data, including the heat capacity in low temperature range and the standard enthalpy of formation, were determined. These complexes were identified to be [RE2(Glu)2(H2O)8](ClO4)4·H2O (RE = Nd, Eu, Dy) by using thermogravimetric analysis (TG), differential thermal analysis (DTA), and chemical and elementary analyses. Their purity has been determined. No melting points were observed for all the three complexes. The heat capacity of the complexes was measured by an adiabatic calorimeter from 79 to 370 K. Abnormal heat capacity values were detected for two of the complexes and the decomposition range of one complex was found. The temperature, enthalpy change and entropy change of the decomposition processes of the three complexes were calculated. The polynomial equations of heat capacity in the experimental temperature range have been obtained by least squares fitting. The standard enthalpy of formation was determined by an isoperibol reaction calorimeter at 298.15 K. Supported by the Research Fund of Beijing Institute of Petro-Chemical Technology (N06-06)  相似文献   

7.
Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA)2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA)2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA)2–P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.  相似文献   

8.
The thermodynamic parameters (log K, ΔG, ΔH and ΔS) of complexation of Eu(III), a chemical analogue of trivalent actinides, with pyridine monocarboxylates, namely, picolinic acid (pyridine-2-carboxylic acid), nicotinic acid (pyridine-3-carboxylic acid), isonicotinic acid (pyridine-4-carboxylic acid) have been studied at 1.0 M ionic strength adjusted by NaClO4 and 298 K by potentiometry, fluorescence spectroscopy and calorimetry. The potentiometric results revealed formation of four complexes, MLi (i = 1–4) in case of picolinate whereas only ML complexes in case of nicotinate and isonicotinate. The log KML for Eu(III) picolinate complex is higher than that for complexes of Eu(III) with the other two acids. The complexation reaction between Eu(III) and picolinate was found to be exothermic due to chelate formation via pyridyl nitrogen. In case of complexation of Eu(III) with nicotinate and isonicotinate, the enthalpy changes are similar as in the case of simple mono carboxylates and are positive. Life time measurements by time resolved fluorescence spectroscopy, for the decay of 5D0 state of Eu(III) also indicated the formation of ML4 with picolinate and formation of ML only with the other two acids. The experimental observations on the stability and binding mode of the complexes are corroborated by theoretical calculations using the TURBOMOLE software. The detail analysis of calculated charge values of the free ligands and the complexes indicates that charge polarization is more in the isonicotinate than in nicotinate upon complexation.  相似文献   

9.
The extraction of europium to a W/O microemulsion with an anionic surfactant was studied. In the sodium oleate (NaOL)/pentanol/heptane/NaCl system, the influence of aqueous-microemulsion ratio, concentration of NaOL, extraction temperature, concentration of cosurfactant, pH and salting-out agent on the extraction yield were investigated. Europium was probably extracted into the microemulsion phase in the form of Eu(OL)2Cl, and the extraction yield (E%) was above 99% when R = 8. The enthalpy and entropy of Eu(III) extraction were calculated to be −12.18 kJ/mol and −61.41 J/(mol K), respectively. The back-extraction is conducted by hydrochloric acid (0.8 mol/L), which provided better back-extraction yields (95.15%).  相似文献   

10.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

11.
The low-temperature heat capacity of Ln2(MoO4)3 (Ln = La, Sm, and Gd) is investigated by means of adiabatic calorimetry within the range of 60–300 K. The temperature dependences of the heat capacity are found and the values of the standard entropy are calculated, based on extrapolations to 0 K. Characteristic temperatures for molybdates are determined from the results of IR spectroscopic studies. The high-temperature enthalpy of Ln2(MoO4)3 (Ln = Eu, Dy, and Ho) is measured via high-temperature microcalorimetry, and the temperature dependence of heat capacity is calculated in the range of 298–1000 K. Since samarium and gadolinium molybdates are of the same structural type as terbium molybdate, we can estimate the anomaly of the heat capacity in the low-temperature region using the data for terbium molybdate and find the entropy of samarium and gadolinium molybdates.  相似文献   

12.
Two Eu(III) ternary luminescent complexes, Eu(tpb-H)3(Tppo)2 and Eu(tpb-H)3(Topo)2 (Tppo: triphenylphosphine oxide, Topo: trioctylphosphine oxide, tpb: 4,4,4-trifluoro-1-phenyl-1,3-butanedione) were synthesized using β-diketonates and phosphine oxides as ligands. Luminescent polymers were fabricated by incorporating the deuterated Eu(III) complexes in a PMMA matrix. Luminescent PMMA containing Eu(tpb-D)3(Tppo)2 exhibited relatively higher quantum yield, faster radiation rate, sharper red emission and larger stimulated emission cross-section and the results indicated prepared luminescent polymers including Eu(tpb-D)3(Tppo)2 showed promising results for applications in novel organic Eu(III) devices. Additionally, the Eu(III) complexes and luminescent PMMA showed good thermostabilization.  相似文献   

13.
For the selective extraction of Am(III) and Eu(III), quadridentate divalent phenolic Schiff bases-bis-salicylaldehyde ethylenediamine (H2salen) was investigated as a kind of extractant. The influences of alkaline cation, inorganic anion, ionic strength, pH and the concentration of H2salen on the distribution ratio of Am(III) and Eu(III) were investigated in detail. As a result, Am(III) and Eu(III) made anionic 1:1 complexes with the ligand (H2salen) and could be extracted into nitrobenzene as ion-pairs with a suitable monovalent counter anion in the aqueous solution, the extracted species were possibly of the type Am(H2salen) Eu(salen)Cl and Eu(H2salen)Cl3, respectively. The extractability of Eu(III) was significantly stronger than that of Am(III) and the maximum separation factor, SF(Am/Eu), was 96 at pH 4.0. The results indicated that H2salen had good selectivity for Am(III) and Eu(III).  相似文献   

14.
Photoluminescent Eu(III) compounds with anions of the acid 3-CF3C6F4COOH (LH) of composition Eu(L)3·2H2O and Eu(phen)(L)3 were synthesized. The photoluminescence intensity of the complex Eu(phen)(L)3 is higher than that of a similar Eu(III) complex containing anions of the acid 4-CF3C6F4COOH as ligands.  相似文献   

15.
Complexation of sulfoxides R1R2S=O with the -diketonate Eu(fod)3(fod is heptafluorodimethyloctanedionato) in the ground and excited states in benzene solutions was studied. Excitation of Eu(fod)3was found to increase the formation constants and to reverse the sign of the enthalpy of complexation. The compensation effect was observed for the thermodynamic parameters: S 0= (3.4 ± 0.4) × 10–3H 0+ (50.0 ± 4.7) in the ground state and S * 0= (3.2 ± 0.4) × 10–3H * 0+ (62.0 ± 0.6) in the excited state of Eu(fod)3. The enhancement of the stability of the complexes [Eu(fod)* 3· R1R2S=O] is due to an increase in the entropy of complexation upon excitation of fftransitions in Eu(III).  相似文献   

16.
Complexation between europium(III) 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate Eu(Fod)3 in the ground and excited electronic states and D-(D) and L-camphor (L) in benzene was studied. The stability constants and thermodynamic parameters of formation of the complexes [Eu(Fod)3(L)] and [Eu(Fod)3(D)] were determined by chemiluminescent and polarimetric methods for the ground state and by kinetic luminescence spectroscopy for the excited state. The photoexcitation of Eu(Fod)3 was found to enhance the stabilities of [Eu(Fod)3(L)] and [Eu(Fod)3(D)]. It was concluded that the photoexcitation of the f-f transitions in Eu(Fod)3 increases the contribution from the 4f orbital to coordination bonding.  相似文献   

17.
A europium salt-Na[Eu(5,5′-DMBP)(phen)3]·Cl3 (Eu(III)-CPLx) was prepared by using various precursors such as 5,5′-Dimethyl-2,2′-bipyridyl (5,5′-DMBP), 1,10-phenanthroline (phen) and europium chloride hexahydrate (EuCl3·6H2O) by a complexation method. The red emission fluorescent Na[Eu(5,5′-DMBP)(phen)3]·Cl3/D-Dextrose (Eu(III)-CPLx/D-Dex) composite was synthesized by using an adsorption method with Eu(III)-CPLx and D-Dextrose (D-Dex). The Eu(III)-CPLx and fluorescent (Eu(III)-CPLx/D-Dex) composites were characterized by numerous techniques. The fluorescent (Eu(III)-CPLx/D-Dex) composite demonstrated a strong red emission and controlled fluorescence quenching in the solid state and was consequently used in latent fingerprint (LFP) detection. The LFPs were developed by using a powder dusting method (PDM) with Eu(III)-CPLx and fluorescent Eu(III)-CPLx/D-Dex composites on different substrates under daylight and UV-light irradiation at 365 nm. The fluorescent Eu(III)-CPLx/D-Dex composite was effectively explored for developing LFP images on various substrates and also acts as a better labeling agent for LFP detection in forensic science crime scene investigations.  相似文献   

18.
The SiO2/Y2O3:Eu core-shell materials and hollow spheres were first synthesized by a template-mediated method. X-ray diffraction patterns indicated that the broadened diffraction peaks result from nanocrystals of Y2O3:Eu shells and hollow spheres. X-ray photoelectron spectra showed that the Y2O3:Eu shells are linked with silica cores by Si-O-Y chemical bond. SEM and TEM observations showed that the size of SiO2/Y2O3:Eu core-shell structure is in the range of 140-180 nm, and the thickness of Y2O3:Eu hollow spherical shell is about 20-40 nm. The photoluminescence spectra of SiO2/Y2O3:Eu core-shell materials and Y2O3:Eu hollow spheres have better red luminescent properties, and the broadened emission bands came from the size effects of nanocrystals composed of Y2O3:Eu shell.  相似文献   

19.
Herein, novel host–guest films produced by coarse vacuum cosublimation of the parylene C dimer and Eu(tta)3phen are prepared and studied. Eu(tta)3phen sublimation at different temperatures allows films with different concentrations of the Eu complex to be obtained. The films are characterized by Rutherford backscattering spectrometry (RBS), FTIR spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), and UV/Vis absorption and emission spectroscopy. RBS, FTIR, and XRD reveal the incorporation of Eu(tta)3phen into the parylene matrix. AFM evidences the very flat film surface, which is particularly advantageous for optical applications. UV/Vis absorption and emission analyses confirm that the optical properties of Eu(tta)3phen are preserved in the deposited films. Fluorescence measurements evidence the occurrence of an energy‐transfer process between parylene and Eu(tta)3phen, and this results in an increase in the light emitted by the Eu complex that is as much as five times higher than that emitted by Eu(tta)3phen alone.  相似文献   

20.
稀土超分子纳米功能材料的组装及其荧光性质比较   总被引:13,自引:0,他引:13  
本文在无水乙醇中制备了铕的四元、三元和二元系列配合物,当配体Phen和TTA共存时,协同发光效应使得Eu(Phen)2(TTA)2的荧光最强,在铕配合物和纳米级介孔分子筛MCM-41或(CH3)3Si-MCM-41组成的超分子发光体系中,主体分子筛的疏水孔道环境有利于客体铕配合物的发展,说明主客体之间的相互作用会对复合的超分子发光材料的荧光性质产生影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号