首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrooxidation of hydrazine and its methylderivatives (methylhydrazine and 1,1-dimethylhydrazine) on bare Pt and Pt electrode surfaces modified by underpotential metal adsorbates was studied in acetonitrile. On bare Pt, one-third of the molecules of the substances under examination undergo a two-electron oxidation to the corresponding diimides, while the remaining number of molecules act as the required proton acceptors in neutral acetonitrile. In alkaline solutions, hydrazine undergoes a quantitative four-electron oxidation process, while its methyl derivatives are oxidized quantitatively to the corresponding diimides in the same media. The pronounced inhibition effects on hydrazine oxidation caused by underpotential T1 and Pb adsorbates were interpreted in terms of a change in the chemical interaction of hydrazine molecules and the electrode surface modified by the underpotential metal adsorbates.  相似文献   

2.
朱文  杨君友  周东祥  樊希安  段兴凯 《化学学报》2007,65(20):2273-2278
研究了碲在金衬底上的不可逆吸附行为特征及其对碲原子欠电位沉积行为的影响. 同时也探讨了碲原子于金衬底上的欠电位沉积机制. 结果显示在开路条件下碲原子在金衬底表面具有不可逆的吸附行为, 证实了在金的双电层范围内很难将这种碲的吸附物移走. 为了完全移走碲的吸附物, 需要采用特定的电化学清洗程序. 发现碲的吸附物移走发生在电位循环至金的氧化区域, 且在该区域这种碲的吸附物移走与金的表面氧化同时发生. 扫描速率分析结果证实碲欠电位沉积在金表面符合Sanchez-Maestre模型的三个标准, 说明碲原子于金衬底上欠电位沉积符合二维形核和生长机制.  相似文献   

3.
The electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) has been studied using voltammetry, chronoamperometry, and in situ infrared spectroscopy. The oxidative adsorption of ammonia results in the formation of NH(x) (x = 0-2) adsorbates. On Pt(111), ammonia oxidation occurs in the double-layer region and results in the formation of NH and, possibly, N adsorbates. The experimental current transients show a hyperbolic decay (t(-1)), which indicates strong lateral (repulsive) interactions between the (reacting) species. On Pt(100), the NH(2) adsorbed species is the stable intermediate of ammonia oxidation. Stabilization of the NH and NH(2) fragments on Pt(111) and Pt(100), respectively, is in an interesting agreement with recent theoretical predictions. The Pt(111) surface shows extremely low activity in ammonia oxidation to dinitrogen, thus indicating that neither NH nor N (strongly) adsorbed species are active in dinitrogen production. Neither nitrous oxide nor nitric oxide is the product of ammonia oxidation on Pt(111) at potentials up to 0.9 V, as deduced from the in situ infrared spectroscopy measurements. The Pt(100) surface is highly active in dinitrogen production. This process is characterized by a Tafel slope of 30 mV decade(-1), which is explained by a rate-determining dimerization of NH(2) fragments followed by a fast decay of the resulting surface-bound hydrazine to dinitrogen. Therefore, the high activity of the Pt(100) surface for ammonia oxidation to dinitrogen is likely to be related to its ability to stabilize the NH(2) adsorbate.  相似文献   

4.
The oxidation of formic acid at Pt electrodes in the presence of underpotentially deposited (UPD) Pb has been studied using an electrochemical quartz crystal microbalance (EQCM). Although the current associated with the UPD process is largely obscured by current from the oxidation of formic acid, the mass response is dominated by the changes in UPD coverage. Thus examination of mass responses accompanying cyclic voltammetric and constant-potential experiments reveals both variations in UPD coverage and the manner in which the underpotential deposits are affected by adsorbates derived from formic acid. At low concentrations of formic acid there is some suppression of the underpotential deposit and data suggest that strongly adsorbing intermediates form most rapidly in the hydrogen adsorption region of potential. Mass responses also indicate slight increases in UPD coverage upon removal of strongly adsorbed species by oxidation. Oxidation of high concentrations (0.1 M) of formic acid induces a significant positive shift in the potential for removal of the UPD deposit on the positive scan, and on the subsequent negative scan the rapid reaction between the oxidized Pt surface and formic acid removes the oxide at a higher potential than normal and consequently allows the UPD process to begin at a more positive potential. Adsorption of Pb2+ at oxidized Pt surfaces is also inhibited by the presence of formic acid.  相似文献   

5.
The selective reduction of NO(2)(-) to N(2) in 0.1 M NaOH was obtained at a Pt(100) electrode in a narrow but distinct potential region. This is the first report of such selectivity for this reaction on Pt(100), which is known to be the most catalytically active platinum surface toward NO(2)(-) reduction in alkaline media. Both ammonia and nitrous oxide are ruled out as possible reaction intermediates on the basis of online electrochemical mass spectrometry. Based on earlier work on ammonia oxidation, NH(2) adsorbates are speculated to be involved in the reaction mechanism.  相似文献   

6.
The electrochemical behaviour of rhodizonic acid and tetrahydroxy-1,4-benzoquinone on bare Pt and Pt surfaces covered by heavy metal monolayers deposited at underpotentials was studied in aqueous 0.5 M HClO4 solutions. It was found that Tl, Pb and Bi monolayers catalyse markedly the oxidation of rhodizonic acid and tetrahydroxy-1,4-benzoquinone. The same underpotential layers improve the reversibility of the redox system tetrahydroxy-1,4-benzoquinone/hexahydroxybenzene. The enhancement of the overall oxidation and reduction processes has been interpreted in terms of the change of the reaction mechanism from an “inner sphere” mechanism on bare platinum to an “outer sphere” one of the Pt surfaces covered by underpotential layers. The two-electron oxidation of tetrahydroxy-1,4-benzoquinone to rhodizonic acid is followed by a rapid pseudo-first-order hydration reaction, the kinetics of which were studied by ring-disc experiments.  相似文献   

7.
Kinetics and mechanism of nitrate and nitrite reduction on Pt(100) electrode modified by Cu adatoms have been studied in solutions of sulfuric and perchloric acids by means of cyclic voltammetry and in situ IR-spectroscopy. It has been shown that the surface redox process with participation of ammonia or hydroxylamine at 0.5–0.9 V occurs only on the Cu-free platinum. The causes of this effect could be low adsorption energy of nitrate reduction products on copper or changes in the composition of the products (ammonia for Pt(100) and N2O for Pt(100)+Cu). Nitrate reduction on Pt(100)+Cu electrode is much faster in the perchloric acid solution (by several orders of magnitude) as compared with unmodified platinum as a result of induced adsorption of nitrate anions in the presence of partly charged Cu atoms. In the solutions of sulfuric acid the rate of nitrate reduction is considerably lower as copper adatoms facilitate adsorption of sulfate anions, which block the adsorption sites for the nitrate.  相似文献   

8.
采用欠电位沉积法,以铅电极作基体制备了负载型Pt-Sn双金属催化电极。应用循环伏安法和电位阶跃法研究了各种因素对该电极的催化活性和稳定性的影响,并应用XPS和AES技术分析了该电极的表面物性。该电极对酸性介质中的甲醇氧化反应显示出高于Pt-Sn/Pt电极的催化活性和稳定性。  相似文献   

9.
It was demonstrated that some foreign metal monolayers formed by underpotential deposition have pronounced catalytic effects on the oxidation of formic acid on platinum. The explanation of these effects was sought within the framewor of existing data on the formic acid oxidation and the underpotential deposition. It was found that the catalytic effect of foreign metal monolayers originates in the decrease of hydrogen adsorption thus preventing the formation of the main poisoning species COH. At the same time these experiments confirm the previously postulated mechanism of formation of the poisoning species involving adsorbed hydrogen.  相似文献   

10.
Kinetics and mechanism of nitrate anion reduction on the Pt(100) electrode in perchloric and sulfuric acid solutions are studied. Analysis of the results of electrochemical measurements (combination of potentiostatic treatment and cyclic voltammetry) and the data of in situ IR spectroscopy allow suggesting the following scheme of the nitrate reduction process on Pt(100) differing from that in the literature. If the potential of 0.85 V is chosen as the starting potential for a clean flame-annealed electrode surface and negativegoing (cathodic) potential sweep is applied, then an NO adlayer with the coverage of about 0.5 monolayer is formed on Pt(100) in the nitrate solution already at 0.6 V. The further decrease in the potential results in NO reduction to hydroxylamine or/and ammonia, desorbing products vacate the adsorption sites for nitrate and hydrogen adatoms. At E < 0.1 V, adsorbed hydrogen is mostly present on the surface. During positive-going (anodic) potential sweep, the process of nitrate reduction starts after partial hydrogen desorption, the cathodic peak of nitrate reduction to hydroxylamine or ammonia is observed at 0.32 V on cyclic voltammograms. The process of nitrate anion reduction continues up to 0.7 V; at higher potentials, the surface redox process with participation of hydroxylamine or ammonia (the anodic peak at 0.78 V) and nitrate (the cathodic peak at 0.74 V is due to nitrate reduction to NO on the vacant adsorption sites) occurs.  相似文献   

11.
Pt? Cu alloy octahedral nanocrystals (NCs) have been synthesized successfully by using N,N‐dimethylformamide as both the solvent and the reducing agent in the presence of cetyltrimethylammonium chloride. Cu underpotential deposition (UPD) is found to play a key role in the formation of the Pt? Cu alloy NCs. The composition in the Pt? Cu alloy can be tuned by adjusting the ratio of metal precursors in solution. However, the Cu content in the Pt? Cu alloy NCs cannot exceed 50 %. Due to the fact that Cu precursor cannot be reduced to metallic copper and the Cu content cannot exceed 50 %, we achieved the formation of the Pt? Cu alloy by using Cu UPD on the Pt surface. In addition, the catalytic activities of Pt? Cu alloy NCs with different composition were investigated in electrocatalytic oxidation of formic acid. The results reveal that the catalytic performance is strongly dependent on Pt? Cu alloy composition. The sample of Pt50Cu50 exhibits excellent activity in electrocatalytic oxidation of formic acid.  相似文献   

12.
谢泳  李筱琴  任斌  田中群 《电化学》2001,7(1):66-70
利用沉积在粗糙金电极上的过渡金属超薄层电极技术 ,我们获得了氢及一氧化碳在Rh和Pt表面上吸附的拉曼信号 ,并对两者之间的相互作用进行了分析 ..我们还进行了二氧化碳在这两种金属表面的还原行为的初步研究 ,以及对不同方式获得的一氧化碳吸附拉曼信号的特点进行了分析 .  相似文献   

13.
Understanding the pH dependent shift of the oxidation peak of the underpotential deposited hydrogen (Hupd) in cyclic voltammograms on the Pt surface is of significance in terms of both the fundamentals of electrochemistry and the rational design of catalysts for the hydrogen oxidation/evolution reactions (HOR/HER). In this work, we provide compelling evidence that the pH dependent shift in the Hupd peak on Pt surfaces is driven by the structure of interfacial water rather than the specific adsorption of cations on the electrode surface. Combined cyclic voltammetric and surface enhanced spectroscopic investigations using an organic cation and crown‐ether chelated alkali metal cations show that specific adsorption of metal and organic cations on the Pt surface at the conditions relevant to the HOR/HER is unlikely. The vibrational band corresponding to strongly bound water is monitored when the electrode potential is varied in the Hupd range in both acid and base.  相似文献   

14.
同种材料而表面结构不同的电极往往有完全不同的电化学性能.使用在原子水平上表面结构明确的单晶电极不仅有助于对电极表面吸脱附过程、电场作用下表面结构重组、双电层微观结构、分子水平上的反应机理等基础理论进行深入研究,且对高选择性、高效电催化剂的研制也有指导意义.单晶电化学研究的基础就是制备定向不同的单晶电极.本文建立了金属单晶电极制备方法,并报道了Cu2+在Pt单晶电极上UPD(欠电位沉积)过程的研究结果.  相似文献   

15.
We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.  相似文献   

16.
The influence of underpotential Pb and Tl adsorbates on the electrochemical reduction of oxygen on rotating-disc Ag(111), (100), and (110) single-crystal surfaces has been studied in aerated 0.5 M HClO4 solutions at various concentrations of Cl?. On the bare silver substrates oxygen is reduced completely to H2O. Depending on the degree of coverage and the structural arrangements of Pb and Tl adsorbates on the different crystal planes, a partial inhibition of the oxygen reduction is obtained predominatly leading to the formation of the stable intermediate, H2O2. In the presence of Cl? ions in solution, the overvoltage for charge-transfer controlled oxygen reduction increases according to (?E/? logcCl?)i_=?60 mV, due to a specific adsorption of chloride on the silver substrate. In 0.5 M HCl solutions a stimulating effect on the oxygen reduction induced by the underpotential deposition of Pb has been found, which can be interpreted in terms of a competitive adsorption-desorption mechanism involving a replacement of chloride by lead.  相似文献   

17.
The oxidation of carbon monoxide (CO) has received more attention in the last two to three decades owing to its importance in different fields. To control this CO pollution, catalytic converters have been investigated. Different types of catalysts have been used in a catalytic converter for CO emission control purposes. Platinum (Pt)-based noble metal catalysts show great potential for CO oxidation in catalytic converters with high thermal stability and tailoring flexibility. Pt metal catalysts modified with promoters such as alkali metals and reducible metal oxides have received great attention for their superior catalytic activities in CO oxidation. Temperature, close environment of the catalyst, and chemical composition in the surface layer of the catalyst have a huge effect on the active phase dispersion and O2 adsorption capacity of the Pt metal catalysts. The main difference in activities of Pt metal catalyst for CO oxidation in O2 or H2 atmosphere has found. The addition of supports in Pt metal catalysts has improved their performances and reduced their cost. These improvement strongly depends on the surface structure, morphology, number of active sites, and various Pt-O interactions. Many research articles have already been published in CO oxidation over Pt metal catalysts, but no review article dedicated to CO oxidation is available in the literature.  相似文献   

18.
Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.  相似文献   

19.
汪海川  吴秉亮 《电化学》2004,10(4):379-383
应用脉冲电势调制技术,通过控制电极电势可将CO2还原为以吸附COads为主的中间物;之后再将电极电势阶跃到该物种能发生电化学氧化的电势,测量它的暂态氧化电流,得到积分电量Q随被测CO2浓度C的变化关系.对给定的还原时间,在CO2浓度为0.015%~20%的范围内,氧化电量Q与CO2浓度C有确定的对应关系.其中,当还原时间较短及CO2浓度较低情况下,两者有近似线性关系.这是一种可在较宽浓度范围内测定CO2的简便有效方法.  相似文献   

20.
用电化学石英晶体微天平(EQCM)研究酸性和碱性介质中甘氨酸在Pt电极上的吸附和氧化过程.结果表明,甘氨酸的解离吸附和氧化行为与溶液的酸碱性密切相关.酸性溶液中甘氨酸吸附较弱,碱性溶液中则产生强吸附物,且当电位低于0V(vs.SCE)时可吸附于Pt电极表面.此外,碱性溶液中甘氨酸还表现出较高的电氧化活性.通过EQCM定量检测上述过程中Pt电极表面的质量变化,测定了不同电位区间(氢区、双电层区和氧区)每传递一个电子所对应的电极表面吸附物种的平均摩尔质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号