首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To understand the fundamentals of enzymatic reactions confined in micro‐/nanosystems, the construction of a small enzyme reactor coupled with an integrated real‐time detection system for monitoring the kinetic information is a significant challenge. Nano‐enzyme array reactors were fabricated by covalently linking enzymes to the inner channels of a porous anodic alumina (PAA) membrane. The mechanical stability of this nanodevice enables us to integrate an electrochemical detector for the real‐time monitoring of the formation of the enzyme reaction product by sputtering a thin Pt film on one side of the PAA membrane. Because the enzymatic reaction is confined in a limited nanospace, the mass transport of the substrate would influence the reaction kinetics considerably. Therefore, the oxidation of glucose by dissolved oxygen catalyzed by immobilized glucose oxidase was used as a model to investigate the mass‐transport‐related enzymatic reaction kinetics in confined nanospaces. The activity and stability of the enzyme immobilized in the nanochannels was enhanced. In this nano‐enzyme reactor, the enzymatic reaction was controlled by mass transport if the flux was low. With an increase in the flux (e.g., >50 μL min?1), the enzymatic reaction kinetics became the rate‐determining step. This change resulted in the decrease in the conversion efficiency of the nano‐enzyme reactor and the apparent Michaelis–Menten constant with an increase in substrate flux. This nanodevice integrated with an electrochemical detector could help to understand the fundamentals of enzymatic reactions confined in nanospaces and provide a platform for the design of highly efficient enzyme reactors. In addition, we believe that such nanodevices will find widespread applications in biosensing, drug screening, and biochemical synthesis.  相似文献   

2.
Size‐tunable nanofluidic devices coupled to an electrochemical detector have been designed and then used to study glucose oxidase (GOx) reaction kinetics confined in nanospaces. The devices are fabricated via a photochemical decomposition reaction, which forms nanochannels covered with carboxyl groups. The generated carboxyl groups enable us to chemically pattern biological molecules on the polymer surfaces via covalent bonding. With this approach, the activity of the immobilized biological molecules confined in nanospaces with different sizes has been investigated. GOx species are chemically immobilized on the surface of the nanochannels, catalyzing the oxidation of substrate glucose as it flows through the channels. The enzyme reaction product, hydrogen peroxide, passing through the nanochannels, reaches an electrochemical detector, giving rise to an increase in anodic current. This steady‐state electrochemical current, which responds to various glucose concentrations, can be used to evaluate the GOx activity under confinement conditions. The results show significant nanoconfinement effects that are dependent on the channel size where the reaction occurs, demonstrating the importance of spatial confinement on the GOx reaction kinetics. The present approach provides an effective method for the study of enzyme activity and other bioassay systems, such as cell assays, drug discovery, and clinical diagnosis.  相似文献   

3.
The pH-static enzyme sensor consists of a chemical sensor-actuator system covered with a thin enzyme-entrapping membrane. By the electrochemical generation of protons or hydroxyl ions, pH changes induced by the conversion of a substrate by the enzymatic reaction are compensated. The pH inside the membrane remains at a constant level and the control current is linearly related to the substrate concentration and independent of the buffer capacity of the sample. The sensitivity and linearity of the sensor response are evaluated. Depending on the enzyme load of the membrane, the operation of the sensor is either diffusion controlled or determined by the enzyme kinetics.  相似文献   

4.
The use of enzyme labeling techniques to convert biorecognition events into high sensitivity electrochemical signals may follow two different strategies. One, in which the current is the electrocatalytic response of a redox couple serving as cosubstrate to a redox enzyme label and another that consists in the detection of an electrochemically active product of the enzyme label. The theoretical relationships that link, in the latter case, the electrochemical current response to the amount of recognized labeled target analyte are established for steady-state diffusion-convection chronoamperometric regimes. Two governing parameters thus emerge. One measures the Michaelis-Menten competition in the enzyme kinetics. The other characterizes the competition between the enzymatic kinetics and the diffusion of the substrate. The electrochemical response is finally related to the labeled target analyte concentration in solution through the recognition isotherm. The direct electrochemical product detection thus provides a route to the characteristics of the recognition isotherm, which serves as a calibration curve in analytical applications. The establishment of further theoretical relationships allows one to surmise the increase in sensitivity that may be obtained by using cyclic voltammetry instead of steady-state chronoamperometry in standard electrochemical cells or by accumulation of the enzyme-product in cells of small volume/surface ratios. The theoretical predictions are tested with the example of the avidin-biotin recognition process in a system that involves alkaline phosphatase as enzyme label and 4-amino-2,6-dichlorophenyl phosphate as substrate, generating 4-amino-2,6-dichlorophenol as electrochemically active product. The advantages of the dichloro-substitution are discussed. The theoretical analysis is a requisite for a rational and realistic discussion of the analytical performances of the steady-state chronoamperometric and cyclic voltammetric approaches. These are shown to compare favorably with the best heterogeneous bioaffinity assays so far reported.  相似文献   

5.
A mediated amperometric enzyme electrode, which was constructed by immobilizing oligosacharide dehydrogenase behind a dialysis membrane on the surface of a carbon paste electrode containing p-benzoquinone, showed a current response to d-xylose, d-galactose, d-mannose, lactose, maltose, maltotriose, maltopentaose and maltohexaose. The sensitivity of the current response to these carbohydrates was dependent on the kinetics of the immobilized enzyme reaction and/or the permeation rate of the substrate through the dialysis membrane. Hence the sensitivity could be varied by controlling the amount of the immobilized enzyme and the thickness of the dialysis membrane. The time dependence of the current response ofthe enzyme electrode with a large amount of the immobilized enzyme and a thicker dialysis membrane could be explained by an equation describing diffusion of the substrate in the membrane. The enzyme electrode was used to measure lactose in milk and to assay α-amylase in standard serum.  相似文献   

6.
The plasma‐electrochemical growth of an ion‐conducting film by the oxidation of a metal in an electronegative plasma is investigated and compared with results from thermal oxidation. As model system we studied the oxidation kinetics of silver electrodes in a Cl2 rf plasma. The electrochemical control of the reaction by external currents through the product layer using the plasma as a fluid electrode was achieved. Both potentiostatic and galvanostatic control of the reaction was applied. The morphology of the product layer and its temporal evolution was investigated using SEM. A formation of silver chloride surface patterns in the oxidation process takes place if a simple stability criterion is not fulfilled. Specific surface morphologies were found under different experimental conditions. The morphology of the product layer is influenced by the external electric current and the substrate temperature. The influence of the plasma phase on the thermodynamics and kinetics of the oxidation process is discussed. The role of excited plasma species, the electrical charging of the surface and radiation from the plasma are taken into account.  相似文献   

7.
Homotopy perturbation method is used to extend the approximate analytical solutions of non-linear reaction equations describing enzyme kinetics for combinations of parameters for which solutions obtained in previous works are not valid. Also, by constructing a new homotopy, alternative approximate analytical expressions for substrate, substrate-enzyme complex and product concentrations are found. These first-order approximate solutions give more accurate results than the second-order approximations derived in previous works.  相似文献   

8.
The kinetic theory of the substrate reaction during the modification of enzyme activity previously described by Tsou has been applied to a study on the kinetics of slow irreversible inhibition of creatine kinase by planar anions. Kinetic equation of substrate reaction was derived according to the theoretical analysis and experiment data, and then was simplified. From the simplified equation for the substrate reaction in the presence of the inhibitors, the microscopic rate constants for the reaction of the inhibitors with enzyme were obtained. The mechanism of inhibition of enzyme activity was discussed.  相似文献   

9.
Enzyme membrane reactors can be used to enhance the productivity and practicality of certain biotransformations by improving substrate/enzyme contact, by providing a simple and reversible means of enzyme “immobilization,” and by effecting the removal of inhibitory reaction products. This paper describes the development and eventual scale-up of a multiphase/extractive membrane reactor designed to manage reaction problems encountered in a biphasic reaction system characterized by the formation of an inhibitory reaction product.In particular, the application of this membrane reactor to an enzyme-mediated resolution of a racemic mixture is described — namely, the optical resolution of a chiral intermediate used in the production of diltiazem, a drug used in the treatment of hypertension and angina. The development process is traced from bench-scale studies of process feasibility through optimization, process reliability, and pilot-plant studies — a process that ultimately culminated in the operation of a commercial-scale membrane reactor facility that currently produces over 75 metric tons per year of diltiazem intermediate.  相似文献   

10.
研究了羟基丁酸 羟基戊酸共聚物 (PHBV)在脂肪酶中的降解行为 ,用滴定法测定降解速度并进行酶促反应动力学研究 .探讨了降解速度与酶浓度和底物浓度的数学关系和Michaelis Menten常数 ,从实验上和理论上证实了PHBV的物理形态和几何尺寸对酶降解过程的影响 ,以及实验数据与非均相动力学模型的拟合  相似文献   

11.
An alternative substrate is described for enzyme immunosaasay with electrochemical detection. Alkaline phosphatase (EC.3.1.3.1) activity is determined by using p-aminophenyl phosphate as the enzyme substrate. Enzyme-generated p-aminophenol is detected amperometrically at a glassy carbon electrody by liquid chromatography with electrochemical detection. The oxidation potential obtained for the detectionof p-aminophenol is lower than that for phenol, the previously used substrate product. The detection limit for p-aminophenol is 0.20pmol. A detection limit of 30 pg ml-1 for digoxin and a 5-min incubationtime for the enzyme reaction were obtained with the new system.  相似文献   

12.
界面微环境是影响酶催化反应及酶传感性能的关键因素. 本研究基于三维微纳米结构多孔金基底, 通过调控电极表面的亲水和疏水浸润性, 制备了具有固-液-气三相界面微环境的氧化酶电极, 并研究了界面微环境对酶催化反应动力学的影响规律. 基于所制备的三相界面多孔金结构酶电极, 反应物氧气能够从气相直接快速地传输到酶催化反应界面, 极大地提升了界面氧气浓度及其稳定性, 从而大幅度提高了氧化酶活性及酶电极响应的稳定性. 以葡萄糖为模型待测物, 基于该三相界面酶电极的电化学酶生物传感器拥有宽的线性范围、 高的灵敏度、 低的检出限以及良好的稳定性. 这类独特的三相反应界面设计为高效酶生物传感器的建构以及生物分子的精准检测提供了新思路.  相似文献   

13.
The accurate determination of the maximum turnover number and Michaelis constant for membrane enzymes remains challenging. Here, this problem has been solved by observing in parallel the hydrolysis of thousands of individual fluorescently labeled immobilized liposomes each processed by a single phospholipase A2 molecule. The release of the reaction product was tracked using total internal reflection fluorescence microscopy. A statistical analysis of the hydrolysis kinetics was shown to provide the Michaelis–Menten parameters with an accuracy better than 20 % without variation of the initial substrate concentration. The combined single‐liposome and single‐enzyme mode of operation made it also possible to unravel a significant nanoscale dependence of these parameters on membrane curvature.  相似文献   

14.
Sun W  Jiao K  Zhang S 《Talanta》2001,55(6):1235-1218
A sensitive electrochemical enzyme-linked immunosorbent assay (ELISA) for the determination of cucumber mosaic virus (CMV) was proposed in this paper. The activity of labeled enzyme, horseradish peroxidase, was measured with electrochemical methods using o-phenylenediamine as substrate. The enzymatic reaction product is 2,3-diaminophenazine, which can be easily reduced on the dropping mercury electrode with improved sensitivity. Coupled with the plate trapped antigen indirect ELISA format using polyclonal rabbit antibody of CMV, the electrochemical detection was performed for CMV with the detection limit of 0.5 ng ml−1, which is ten times more sensitive than the colorimetric ELISA method. The conditions for enzymatic reaction and immunoassay were carefully optimized.  相似文献   

15.
Double substrate enzyme kinetics has a leading role for product quantification and optimization in different chemical and biochemical sectors. Mathematical approach for controlling these reactions in different stages by suitable parameters adds a new dimension in this interdisciplinary field of research. Applying control theoretic approach in the reversible backward stages of double substrate enzymatic model, time economization with regard to product formation is significant. In this article, we formulate a double substrate mathematical model of enzymatic dynamical reaction system with control measures with a view to observe the effect of changes of these measures with respect to the concentration of substrates, enzyme, complexes and finally product. Here, Pontryagin Minimum Principle is used for observing the effect of control measures in the system dynamics with the help of Hamiltonian. We compare the relevant numerical solutions for the substrates, enzyme, complexes and product concentration profile for a specified time interval with respect to control factors.  相似文献   

16.

A mathematical model of electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme is discussed. The model involves the coupled system of non-linear reaction–diffusion equations of substrate and hydrogen ion. The non-linear term in this model is related to the Michaelis–Menten reaction of the substrate and non-Michaelis–Menten kinetics of hydrogen ion. The approximate analytical expression of concentration of substrate and hydrogen ion has been derived by solving the non-linear reactions using Taylor’s series method. Reaction rate and effectiveness factor are also reported. A comparison between the analytical approximation and numerical solution is also presented. The effects of external mass transfer coefficient and the electrostatic potential on the overall reaction rate were also discussed.

  相似文献   

17.
Tian Y  Ye S  Shi X  Jing L  Liang C  Xian Y 《The Analyst》2011,136(23):5084-5090
An electrochemical platform for acetylcholinesterase (AChE) activity assay and its inhibitors screening is developed based on the Michael addition reaction of thiocholine, the hydrolysis product of acetylthiocholine (AsCh) in the presence of AChE, with the electrogenerated o-quinone of catechol-terminated SAMs on a gold electrode. For understanding and confirming the mechanism of the reaction, the electrochemical behaviors of Michael addition reaction of two model compounds, cysteine (CYS) and glutathione (GSH), towards the catechol-terminated SAMs have been studied. The enzyme kinetics and the inhibition effects of three types of AChE inhibitors, which are tacrine, carbofuran and parathion-methyl, have been investigated using an amperometric method. Among these three inhibitors, tacrine exhibits the strongest inhibiting effect, which is reinforced by the resulting data of kinetic studies on each inhibitor's influence upon the enzyme activity.  相似文献   

18.
The electrochemical oxidative cleavage of lignin is a promising approach to valorize lignin's monomeric subunits as bulk and fine chemicals. It is attractive since it does not require toxic solvents or expensive catalysts. However, due to the rather unselective nature of the electrochemical depolymerization, overoxidation of the generated products occurs. In order to prevent the degradation of the aromatic monomeric compounds into acids and CO2, a selective product removal strategy from the reaction environment is necessary. We report the use of an electrochemical membrane reactor for the continuous electrochemical cleavage of lignin integrated with an in-situ nanoporous filtration process. The generated cleavage products are removed through the nanofiltration membrane from the oxidative environment and product degradation is prevented. The reaction/separation unit comprises an unprecedented electrode configuration: electrode rods integrated into a 3D-printed turbulence-promoting mixer minimizing fouling and polarization phenomena at membrane and electrodes.  相似文献   

19.
The overall rate equation for a reaction sequence consisting of a pre-equilibrium and ratedetermining steps should not be derived on the basis of the concentration of the intermediate product (X). This is apparently indicated by transition state theory (as the path followed to reach the highest energy transition state is irrelevant), but also proved by a straight-forward mathematical approach. The thesis is further supported by the equations of concurrent reactions as applied to the partitioning of X between the two competing routes (reversal of the pre-equilibrium and formation of product). The rate equation may only be derived rigorously on the basis of the law of mass action. It is proposed that the reactants acquire the overall activation energy prior to the pre-equilibrium, thus forming X in a high-energy state en route to the rate-determining transition state. (It is argued that conventional energy profile diagrams are misleading and need to be reinterpreted.) Also, these arguments invalidate the Michaelis-Menten equation of enzyme kinetics, and necessitate a fundamental revision of our present understanding of enzyme catalysis. (The observed “saturation kinetics” possibly arises from weak binding of a second molecule of substrate at the active site; analogous conclusions apply to reactions at surfaces).  相似文献   

20.
Thanks to its insensitivity to dioxygen and to its good catalytic reactivity, and in spite of its poor substrate selectivity, quinoprotein glucose dehydrogenase (PQQ-GDH) plays a prominent role among the redox enzymes that can be used for analytical purposes, such as glucose detection, enzyme-based bioaffinity assays, and the design of biofuel cells. A detailed kinetic analysis of the electrochemical catalytic responses, leading to an unambiguous characterization of each individual steps, seems a priori intractable in view of the interference, on top of the usual ping-pong mechanism, of substrate inhibition and of cooperativity effects between the two identical subunits of the enzyme. Based on simplifications suggested by extended knowledge previously acquired by standard homogeneous kinetics, it is shown that analysis of the catalytic responses obtained by means of electrochemical nondestructive techniques, such as cyclic voltammetry, with ferrocene methanol as a mediator, does allow a full characterization of all individual steps of the catalytic reaction, including substrate inhibition and cooperativity and, thus, allows to decipher the reason that makes the enzyme more efficient when the neighboring subunit is filled with a glucose molecule. As a first practical illustration of this electrochemical approach, comparison of the native enzyme responses with those of a mutant (in which the asparagine amino acid in position 428 has been replaced by a cysteine residue) allowed identification of the elementary steps that makes the mutant type more efficient than the wild type when cooperativity between the two subunits takes place, which is observed at large mediator and substrate concentrations. A route is thus opened to structure-reactivity relationships and therefore to mutagenesis strategies aiming at better performances in terms of catalytic responses and/or substrate selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号