首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical double layer on Ag in alkaline NaCl solutions was examined ex situ with X-ray photoelectron spectroscopy (XPS). The specimens were removed from the electrolyte with hydrophobic surfaces and under potential control. The potential dependent surface concentrations of the adsorbed anions (Cl, OH), cations (Na+), the surface excess charge and the amount of adsorbed water were determined and compared to the results obtained for acidic NaCl solutions. The distinct differeness found between both electrolytes were discussed in terms of a specific adsorption of hydroxide ions in the basic Cl-electrolyte; i.e., the OH-surface concentration has to be considered for a proper determination of the cationic excess charge and the potential of zero charge. In addition, the initial stages of silver (1) oxide formation were examined with XPS.  相似文献   

2.
Highly alkaline electrolytes have been shown to improve the formation rate of C2+ products in the electrochemical reduction of carbon dioxide (CO2) and carbon monoxide (CO) on copper surfaces, with the assumption that higher OH? concentrations promote the C?C coupling chemistry. Herein, by systematically varying the concentration of Na+ and OH? at the same absolute electrode potential, we demonstrate that higher concentrations of cations (Na+), rather than OH?, exert the main promotional effect on the production of C2+ products. The impact of the nature and the concentration of cations on the electrochemical reduction of CO is supported by experiments in which a fraction or all of Na+ is chelated by a crown ether. Chelation of Na+ leads to drastic decrease in the formation rate of C2+ products. The promotional effect of OH? determined at the same potential on the reversible hydrogen electrode scale is likely caused by larger overpotentials at higher electrolyte pH.  相似文献   

3.
Electrode behavior of Sb-doped poly-crystalline tin oxide electrodes has been investigated by means of current and differential capacity measurements in molten chloroaluminate melts (AlCl3+NaCl) with different pCl values. The SnO2 is stable in the melts consisting of near equimolar composition, being used as an indicator electrode possessing a polarizable potential region between chlorine evolution and its cathodic decomposition. The differential capacity is assigned to the space charge layer capacity of the electrode side and its potential dependence is explained by using the Mott-Schottky equation. It is found that the flat band potential does depend on pCl (=?log aCl?) at a rate of 2(2.3kT/e) per pCl unit. This anomaly is attributed to the specific adsorption of Cl? ions on the oxide electrode.  相似文献   

4.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

5.
Reaction dynamics of sodium cluster ions, Na n + (n = 2–9), in collision with molecular oxygen, O2 was investigated by measuring the absolute dissociation cross sections and the branching fractions by using a tandem mass spectrometer equipped with several octapole ion guides. The mass spectrum of the product ions show that the dominant reaction channels are production of oxide ions, NakOi (i =1, 2), and intact ions, Na p + (p < n). With increase in the collision energy, the cross section for the production of the oxide ions decreased, while that for the production of the intact ions increased. The collision-energy dependences of the cross section for the oxide formation reveals that electron harpooning from the molecule to Na n + preludes the oxideion formation. On the other hand, the collision-energy dependences of the cross sections for the intact ion formation is explained by a hard-sphere-collision model similar to the collisional dissociation of Na n + by rare-gas impact.  相似文献   

6.
Thermodynamics and kinetics of nicotinamide adenine dinucleotide (NAD+) adsorption on a glassy carbon (GC) electrode surface was investigated at various electrode potentials and NAD+ concentrations using differential capacitance (DC) and attenuated total reflection Fourier transform infrared (ATR-FTIR) techniques. Equilibrium adsorption measurements confirmed that NAD+ spontaneously and strongly adsorbs on the GC electrode surface. The affinity of NAD+ towards adsorption on the GC electrode surface was found to increase with an increase in electrode potential (charge) to more positive values; the corresponding apparent Gibbs free energy of adsorption was ?32.80?±?0.25, ?35.61?±?0.86, and ?38.02?±?0.40 kJ mol?1 on negatively, neutral, and positively charged electrode surfaces, respectively. The kinetics of NAD+ adsorption is also found to be highly dependent on the electrode surface potential (charge), and it increases with an increase in electrode potential (charge) to positive values. The adsorption process was modeled using a two-step kinetic model, in which the adsorption process involves the formation of two forms of NAD+ on the surface: the thermodynamically unstable (NAD+ ads,rev) and stable (NAD+ ads,stable) forms. ATR-FTIR further confirmed that NAD+, indeed, adsorbed on the GC electrode surface.  相似文献   

7.
The adsorption of adamantane (Ad), adamantanol (AdOH), thiocamphor (TC), and a supramolecular complex (cryptate) of sodium ion [Na+ ⊂ 2.2.2.] from DMSO solutions on the mercury electrode is studied by the differential capacitance method. In the considered systems, the surfactants exhibit the high surface activity, which manifests itself in different ways depending on the potential scan direction. For AdOH, TC, and [Na+ ⊂ 2.2.2.] that have either a dipole moment or an electrostatic charge, it is assumed that the important role is played by the adsorbate-solvent interaction at the interface, which can be the key factor determining the formation of a new adsorption layer structure in the positive potential range. The adsorption behavior of the mentioned group of surfactants radically differs from that of Ad hydrocarbon, namely, the adsorption of the latter is not accompanied by the formation of a new adsorption layer structure. The obtained results suggest that for the adsorption of surfactants from nonaqueous solvents (in contrast to aqueous solutions), the interaction between the adsorbate and the solvent molecules, which under certain condition results in the formation of two-dimensional supramolecular structures at the electrode/solution interface, acquires substantial importance.  相似文献   

8.
Li‐rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 (LNCM) is, for the first time, examined as the positive electrode for hybrid sodium‐ion battery and its Na+ storage properties are comprehensively studied in terms of galvanostatic charge–discharge curves, cyclic voltammetry and rate capability. LNCM in the proposed sodium‐ion battery demonstrates good rate capability whose discharge capacity reaches about 90 mA h g?1 at 10 C rate and excellent cycle stability with specific capacity of about 105 mA h g?1 for 200 cycles at 5 C rate. Moreover, ex situ ICP‐OES suggests interesting mixed‐ions migration processes: In the initial two cycles, only Li+ can intercalate into the LNCM cathode, whereas both Li+ and Na+ work together as the electrochemical cycles increase. Also the structural evolution of LNCM is examined in terms of ex situ XRD pattern at the end of various charge–discharge scans. The strong insight obtained from this study could be beneficial to the design of new layered cathode materials for future rechargeable sodium‐ion batteries.  相似文献   

9.
Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32? are not detected when analyzing alkaline‐earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3·Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3·Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3·Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3·Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOH·Na+ and Na2O·Na+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low‐abundance oxalate ion series was observed that had the general formula Na2?xHxC2O4·Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A statistical treatment of data for the standard molar Gibbs free energies of transfer of monovalent ions from water to polar solvents has been made in terms of properties of the solvents and the ions. A common multiple regression equation with seven fitting constants, for almost 200 data points, has been found to describe the data in terms of four solvent properties: their electron donor and acceptor abilities, dielectric constant, and cohesive energy density, and three ionic properties: charge, size, and softness. For the ions Na+, K+, Rb+, Cs+, Tl+, (Ph)4As+, Cl?, Br? and N 3 ? the predictions of the equation are within acceptable error limits of the data, and encourage its application to solvents beyond the thirteen used for the data base. For other ions, e.g. H+, Ag+, and the larger anions, further interactions must be taken into account.  相似文献   

11.
A time-dependent molecular orbital method has been developed to study charge transfer in collisions of ions with metal surfaces at energies between 1 and 100 au. A set of localized basis functions consisting of generalized Wannier functions for the surface and s- and p-atomic functions for the ion, is used to separate the system into primary and secondary regions. An effective Hamiltonian and time-dependent equations for the electron density matrix are obtained in the primary region, where most charge transfer occurs. The equations for the electron density matrix are solved with a linearization scheme. The method is suitable to study atomic orbital orientation for collisions of ions and surfaces. A model calculation for Na+ + W(110) collisions with a prescribed trajectory is presented. The interaction potentials between the W(110) surface and Na+ 3s and 3p orbitals are calculated from Na+ pseudopotentials. Results show that the yield of neutralized atoms in 3p states changes as the collision energy is lowered.  相似文献   

12.
We present a theoretical comparison of the surface forces between two graphite-like surfaces at salt concentrations below 10 mM with surfaces charged by various mechanisms. Surface forces include a surface charging or chemisorption contribution to the total free energy. Surfaces are charged by charge regulation (H+ binding), site competition (H+ and cation binding) and redox charging with electrodes coupled to a countercell. Constant surface charge is also considered. Surface parameters are calibrated to give the same potential when isolated. Nonelectrostatic physisorption energies of the potential determining ions provide a specific and significant contribution to the charging energy. Consequently ion specificity is found in the surface forces at concentrations of 1–10 mM, which is not observed under constant charge conditions. The force between redox electrodes continues to show Hofmeister effects at 0.01 mM. We refer to this low concentration Hofmeister effect as “Hofmeister charging”, and suggest that the more common high concentration ion specific effects may be known as “Hofmeister screening”. Hofmeister series are considered over LiCl, NaCl, KCl and NaNO3, NaClO4, NaSCN with the cations (or H+) being the potential determining ions. A K+ anomaly is attributed to the small size of the weakly hydrated chaotropic K+ ion, with Li+ and Na+ explicitly modelled as strongly hydrated cosmotropes.  相似文献   

13.
An ab initio analysis on the involved potential energy surfaces is presented for the investigation of the charge transfer mechanism for the He++N2 system. At high collision energy, as many as seven low-lying electronic states are observed to be involved in the charge transfer mechanism. Potential energy surfaces for these low-lying electronic states have been computed in the Jacobi scattering coordinates, applying multireference configuration interaction level of theory and aug-cc-pVQZ basis sets. Asymptotes for the ground and various excited states are assigned to mark the entrance (He++N2) and charge transfer channels (He+N2+). Nonadiabatic coupling matrix elements and quasi-diabatic potential energy surfaces have been computed for all seven states to rationalize the available experimental data on the charge transfer processes and to facilitate dynamics studies.  相似文献   

14.
A strategy is described to increase charge storage in a dual electrolyte Na‐ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na+ ion de‐insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox‐active electrolytes augment this property via charge transfer reactions at the electrode–electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na4Fe(CN)6) solution is employed as the redox‐active electrolyte (Na‐FC) and sodium nickel Prussian blue (Nax‐NiBP) as the Na+ ion insertion/de‐insertion cathode. The capacity of DESIB with Na‐FC electrolyte is twice that of a battery using a conventional (Na2SO4) electrolyte. The use of redox‐active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high‐energy‐density storage systems.  相似文献   

15.
Dependences of electrokinetic potentials of different silica materials (nano-and ultraporous glasses, a quartz glass plane-parallel capillary, and monodisperse spherical particles of silicon oxide) on the pH of solutions containing single-, double-, and triple-charged cations have been compared. It has been shown that the degree of hydration of a single-charged cation and the structure of an interface substantially affect the position of the isoelectric point (IEP). The most hydrated Na+ ions have virtually no effect on the position of the IEP up to their concentration of 0.1 M irrespective of the thickness of an ion-permeable layer at the surface of a solid phase. A reduction in the radius of a hydrated cation (K+, Cs+) enables its penetration into an ion-permeable layer and, as a consequence, causes the IEP to shift toward larger pH values depending on the parameters of this layer. Two IEPs are observed in LaCl3 solutions: one at a pH value close to pHIEP in NaCl solutions and another at a higher pH value corresponding to the charge reversal of the Stern layer.  相似文献   

16.
The effect of potential on the anodic current transient times τp, which were measured on the gold electrode surface renewed by cutting off a thin surface metal layer immediately in the thallium-containing thiosulfate solutions of compositions (M): 0.05 Na2S2O3, 10?5 to 10?4 TlNO3, and 0.25 K2SO4, is studied. It is shown that the logarithm of inverse transient times 1/τp linearly depends on the electrode potential. Using the microgravimetrical method, it is found that, in the studied potential range, the amount of chemisorbed thallium ions only slightly depends on the potential, and at E = 0.3 V, it is approximately 0.12 μg/cm2. It is evidenced that the transients reaches a plateau, when an equilibrium surface concentration of catalyst is reached. The value 1/τp reflects the rate of electrochemical oxidation of preliminarily adsorbed thallium(I) ions with the formation of catalytically active thallium(III) ions, and the first electron transfer is the limiting stage of the process.  相似文献   

17.
The electrochemical behavior of copper(I) thiosulfate complexes from aqueous solutions containing different amounts of sodium perchlorate NaClO4 is studied by the methods of hydrodynamic voltammetry and potentiometry with a Na+-selective electrode. The electrochemical reaction orders p with respect to Na+ cations are determined from the dependences of exchange currents and direct reaction currents at fixed potential on the equilibrium concentration of Na+ cations. The reaction order p is close to 1 in the Na+ concentration range of 0.06–0.12 M and drops to zero for $c_{Na^ + } $ > 0.12 M. The ion pair (IP) {Na[Cu(S2O3)2]}2? the formation of which precedes the electron transfer reaction is the electrochemically active species for the reduction of copper(I) thiosulfate complexes. The stability constant of IP is determined (K = 27.0 ± 2.4) as well as the rate constants of IP formation and decomposition.  相似文献   

18.
Potential energy surfaces for Na(2S, 2P) interacting with a partially covered tungsten surface are computed within the framework of the method of diatomics-in-molecules (DIM). Only two sodium atoms are considered explicitly but the effect of all of the adsorbed sodium is taken into account through its influence on the fragment matrix elements in the DIM formulation. Na2+ wavefunctions are approximated by valence-bond calculations for the 2Σg+ and 2Σu+ manifolds. The three lowest potential energy surfaces of the polyatomic system suggest plausible pathways for the production of Na+ and Na2+ ions from the interaction of Na(2P) atoms with the metal surface as observed by Auschwitz and Lacmann.  相似文献   

19.
Summary The transport antibiotic Monensin acts as an electrogenic carrier in PVC membranes on Ag/AgCl/Pt solid contacts of disk electrodes. By way of experiments, it was possible to derive the existence of MonH · Na+ complexes from the operational principle of the electrode membranes. The non-physiological formation of protonized, positively charged complexes occurs owing to the high permittivity of o-NPOE as a plasticizer so that the ligand can become effective as an electrically neutral carrier. This is to be taken as the cause for Na+ to become the ion determining the potential also in measurements in the neutral point region; for it is the physiological effect of Monensin in thin biological membranes to mediate, as an exchange diffusion carrier, a Na +-proton countertransport at a 11 ratio. This, however, is undesirable in measurements of the electromotive force (e.m.f.) since otherwise there would be no net charge transfer or formation of a potential difference at the lipophilic electrode membrane/aqueous measuring solution interface dependent upon the Na+ ion activity. The Monensin methylester was used as an electrically neutral ionophor for comparison. Likely, the lipophilic anion tetraphenyl borate causes the formation of MonH · Na+TPB complexes, whereby the neutral molecule Monensin, presumably due to intermolecular hydrogen bonds to the lipophilic anion, undergoes a further distortion in the coordination sphere entailing undesirable electrode characteristics. Under the influence of o-NPOE as a plasticizer, long-lived Na+ selective PVC membranes including Monensin or its methylester derivative, have been realized, which applied on disk electrodes produce reliable sensors for analysis.  相似文献   

20.
Dilute mixtures of C6H6 or C6D6 in He provide abundant [C6H6] or [C6D6] ions and small amounts of [C6H7]+ or [C6D7]+ ions as chemical ionization (CI) reagent ions. The C6H6 or C6D6 CI spectra of alkylbenzenes and alkylanilines contain predominantly M ions from reactions of [C6H6] or [C6D6] and small amounts of MH+ or MD+ ions from reactions of [C6H7]+ or [C6D7]+. Benzene CI spectra of aliphatic amines contain M, fragment ions and sample-size-dependent MH+ ions from sample ion-sample molecules reactions. The C6D6 CI spectra of substituted pyridines contain M and MD+ ions in different ratios depending on the substituent (which alters the ionization energy of the substituted pyridine), as well as sample-size-dependent MH+ ions from sample ion-sample molecule reactions. Two mechanisms are observed for the formation of MD+ ions: proton transfer from [C6D6] or charge transfer from [C6D6] to give M, followed by deuteron transfer from C6D6 to M. The mechanisms of reactions were established by ion cyclotron resonance (ICR) experiments. Proton transfer from [C6H6] or [C6D6] is rapid only for compounds for which proton transfer is exothermic and charge transfer is endothermic. For compounds for which both charge transfer and proton transfer are exothermic, charge transfer is the almost exclusive reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号