首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
a digital simulation analysis is presented of the deleterious effects of uncompensated solution resistance, Rus, on the evaluation of standard rate constant, ksob, by cyclic voltammetry. The results are expressed in terms of systematic deviations of “apparent measured” rate constants, ksob(app), evaluated in the conventional manner without regard for Rus, from the corresponding actual values, ksob(true), as a function of Rus and other experimental parameters. Attention is focused on the effects of altering the electrode area and the double-layer capacitance on the extent of the deviations between ksob(app) and ksob(true), and on comparisons with corresponding simulated results obtained from phase-selective a.c. impedance data. The extent to which ksob(app) <ksob(true) for small Rus values was found to be similar for the cyclic and a.c. voltammetric techniques. The latter method is, however, regarded as being preferable under most circumstances in view of the greater ease of minimising, as well as evaluating, Rus for a.c. impedance measurements. The influence of solution resistance on ksob measurements with microelectrodes and without iR compensation is also considered.  相似文献   

2.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

3.
The study of the redox chemistry of mid-actinides (U−Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=PtBu(pyrr)2]; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium ( 1-M , 2-M , M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+, U6+/5+, and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.  相似文献   

4.
New anionic carbonylcobalt(I) complexes [X2Co(CO)2(PPh3)](PR4) (X=Cl, PR4 = PBzPh3 (I); X = Br, PR4 = PEtPh3 (II)) have been prepared by reduction of the cobalt(II) halides with NaBH4 in the presence of PPh3 and the phosphonium salt PR4X. Cleavage of halide bridges in dimeric or polymeric [XCo(PPh3)2]n and [XCo(PPh3)]n gives the neutral dicarbonyl derivatives XCo(CO)2PPh3)2. Treatment of ClCo(CO)2(PPh3)2 with alkylating agents gives the known σ- and η- organocobalt(I) derivatives, and reactions with TIClO4 in the presence of various amounts of different mono- and bi-dentate phosphines give the cationic tricarbonyl [Co(CO)3(PPh3)2]+, dicarbonyl [Co(CO)2(PMePh2)3]+ and monocarbonyl [Co(CO)L4]+ complexes (L4 = 4P(OMe)3, 2 dppe and 2dppm). The dppm complex crystallizes in the monoclinic space group P21/c with a 17.895(6), b 10.751(2), c 24.687(4) Å, β 98.92(1)°, and Dcalc 1.35 g cm−3 for Z = 4. A final R value of 0.077 ( Rw = 0.061), based on 2656 observed reflections, was obtained. The cobalt atom exhibits a distorted trigonal bipyramidal geometry. The perchlorate anion is severely disordered or freely rotating.  相似文献   

5.
Mono-cyclopentadienyl complexes CpVX2(PR3)2 and Cp′VX2 (PR3)2 (Cp = η5- C5H5; Cp′ = η5-C5H4Me; R = Me, Et; X = Cl, Br) have been prepared by reaction of VX3(PR3)2 with CpM (M = Na, T1, SnBun3, 1/2 Mg) or Cp′Na. Attempts to prepare analogous complexes with other phosphine ligands, PPh3, PPh2 Me, PPhMe2, Pcy3, DMPE and DPPE failed. Reduction of CpVCl2(PEt3)2 with zinc or aluminium under CO (1 bar) offers a simple method for the preparation of CpV(CO)3(PEt3). The crystal structure of the trimethylphosphine complex CpVCl2(PMe3)2 is reported.  相似文献   

6.
7.
The effects of replacing H2O with D2O solvent upon the electrochemical kinetics of simple transition-metal redox couples containing aquo, ammine or ethylenediamine ligands have been investigated at mercury electrodes as a means of exploring the possible contribution of ligand-aqueous solvent interactions to the activation barrier to outer-sphere electron transfer. The general interpretation of solvent isotope effects upon electrode kinetics is discussed; it is concluded that double-layer corrected isotopic rate ratios (kH/kD)E determined at a constant electrode potential vs. an aqueous reference electrode, as well as those determined at the respective standard potentials in H2O and D2O (kSH/kSD), have particular significance since the solvent liquid-junction potential can be arranged to be essentially zero. For aquo redox couples, values of (kSH/kSD) were observed that are substantially greater than unity and appear to be at least partly due to a greater solvent-reorganization barrier in D2O arising from ligand-solvent hydrogen bonding. For ammine and ethylenediamine complexes values of (kH/kD)E substantially greater than, and smaller than, unity were observed upon the separate deuteration of the ligands and the surrounding solvent respectively. Comparison of isotope rate ratios for corresponding electrochemical and homogeneous outer-sphere reactions involving cationic ammine and aquo complexes yields values of (kH/kD) for the former processes that are typically markedly larger than those predicted by the Marcus model from the homogeneous rate ratios. These discrepancies appear to arise from differences in the solvent environments in the transition states for electrochemical and homogeneous reactions.  相似文献   

8.
Bulky phosphanes PR3 (R = C6H11, iC3H7, t-C4H9, C6H4CH3-o) stabilize complexes of type [C5H5Ni(PR3)L]BF4 (L=S(CH3)2, (CH3)3PS), from which [C5H5Ni(PR3)2]+ cations are obtained. Iodide replaces the sulfur ligands to yield neutral C5H5Ni(PR3)I compounds. No stable [C5H5Ni(PR3)]+ cations could be obtained by iodide abstraction, but [C5H5Ni(PR3)CO]+ cations were formed in the presence of carbon monoxide.  相似文献   

9.
The 1H and 31P NMR spectra of (η3-allyl)Pt(PR3)Cl] (PR3 = PMe3, PCy3, P-t-Bu3, P-n-Bu3, PPh3, PPh2Me, PPhMe2 and P(p-Tol)3) complexes in chloroform have been studied. The results suggest that there is bonding interaction between the phosphine and the allyl group via central metal atom.  相似文献   

10.
11.
From the reaction of R′X=NR (X = N or CH) with [MCl(C8H14)2| in the presence of CO or PR3. σ(N)- coordinated complexes cis-RhCl(CO)2(R′CH=NR) and cyclometallated complexes MHCl(L′)(PR3)2 [′ is cyclometallated R′X=NR; R = Ph or Cy when M = Ir; R = Cy when M = Rh] were isolated.The ease of CH bond breaking by M1 appears to be strongly dependent on the basic properties of MI, and decreases as follows: aromatic CH > olefinic CH > aliphatic CH. On the basis of the chemical and structural information, the metallation can be explained in terms of Pearson's symmetry rules for chemical reactions.For the cyclometallated azo compounds, ν(N=N) shows resonance enhancement ion the Raman spectra, and appears to be very sensitive to the basicity of MI in the reactant system.  相似文献   

12.
Flash photolysis of trans-(N2)2W(dppe)2 (1) at ?60, ?30, ?10°C, and room temperature indicates that loss of dinitrogen occurs stepwise via the following proposed intermediates. Photodissociation of 1 gives the transient A decaying with k1 ~ 4450 s?1 to the doubly coordinatively unsaturated species [W(dppe)2], B. Further reactions of B are dependent on the type of gas used to saturate the solutions. In N2-saturated media, B is efficiently reconverted into the starting complex 1 via (N2)W(dppe)2], C(N2), kN22 = 450 s?1, which in turn takes up a second molecule of N2, kN23 = 3.7 s?1. In CO-saturated solutions, trans-(CO)2W(dppe)2 is produced as the final product and the corresponding rate constants are kCO2 1500 s?1 for B → C(CO) and kCO3 = 1.14 s?1 for C(CO) → product. In Ar-saturated solvents, B is transformed, again in two steps; kAr2 = 1 s?1 and kAr3 = 0.1 s1?, to products of unknown structure.The different rate constants kN22, kCO2, kAr2 and kN23, kCO3 and kAr3, together the common activation energy of ca. 11 kcal/mol?1 for the three processes A → B, B → C(N2) and C(N2) → 1 suggest that the reactions of B and C occur by SN2-type displacement of coordinated solvent molecules by the incoming ligands.  相似文献   

13.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

14.
New complexes of diaza- and tetraaza-containing crown ethers, viz., 1,10-diaza-18-crown-6 (1), 1,4,8,12-tetraazacyclopentadecane (2), 1,4,8,11-tetraazacyclotetradecane (3), and 1,4,8,11-tetraazacyclotetradecane 1,4,8,11-tetrachloride tetraacetic acid tetrahydrate (4), with the divalent copper and nickel ions and the Cl, Br, ClO4 , NO3 , and AcO counterions were synthesized. The exchange interactions of these compounds and paramagnetic copper and nickel salts with the TEMPO radical in MeOH—CHCl3 binary mixtures of different compositions were studied. The plots of the linewidths of the hyperfine coupling components of TEMPO vs. concentration of the ions and temperature show that the frequency of diffusion collisions is the rate-limiting step for spin exchange (strong exchange regime). A strong dependence of the exchange rate constant (k ex) on the crown ether and counterion structure was found. The isotropic hyperfine coupling constants (a Cu) and g factors (g i ) were measured for the CuII complexes with the crown ethers. In the case of the crown ether complexes 1—3 with CuCl2, the a Cu constant decreases linearly with an increase in g i = g i – 2.0023 in the series 3 < 2 < 1, whereas k ex increases linearly in the same series with a decrease in the contact HFC on the CuII nucleus (K) and a decrease in covalence of bonding. For the complexes of 2 with CuII and different axial ligands (counterions), k ex increases in the series Cl < ClO4 AcO Br; < NO3 . In the case of the complexes of 2 with NiCl2, k ex increases in the series 1 < 4 < 3 2. For the CuII and NiII salts with the Cl, ClO4 , and NO3 anions, the k ex values are almost independent of the anion nature. The correlation of the k ex values with the electron-spin parameters of the complexes is discussed.  相似文献   

15.
Rate constants for the reaction of O(3P) atoms with C3H4, C3H6 and NO(M = N2O) have been measured over the temperature range 300–392°K using a modulation-phase shift technique. The Arrhenius expressions obtained are:C2H4, k2 = 3.37 × 109 exp[?(1270 ± 200)/RT]liter mole?1 sec?1,C3H6, k2 = 2.08 × 109 exp[?(0 ± 300)/RT]liter mole?1 sec?1,NO(M = N2O), k1 = 9.6 × 109 exp[(900 ± 200/RT]liter2 mole?2 sec?1.These temperature dependencies of k2 are in good agreement with recent flash photolysis-resonance flourescence measurements, although lower than previous literature values.  相似文献   

16.
Imine complexes [MCl(η 6-p-cymene){η1-NHC(H)Ar}(PR3)]BPh4 (1-3) [M = Ru, Os; PR3 = PPh(OEt)2, PPh2OEt; Ar = Ph, p-tolyl] were prepared by reacting MCl26-p-cymene)(PR3) precursors with benzyl azide ArCH2N3 in the presence of NaBPh4. Benzophenone-imine complexes [MCl(η 6-p-cymene){η1-NHCPh2}(PR3)]BPh4 (4-6) [M = Ru, Os; PR3 = PPh(OEt)2, PPh2OEt] were also prepared by allowing MCl26-p-cymene)(PR3) to react with Ph2CNH in the presence of NaBPh4. The complexes were characterised spectroscopically (IR, 1H, 13C, 31P, 15N NMR) and by X-ray crystal structure determination of [RuCl(η 6-p-cymene){η1-NHC(H)-p-tolyl}{PPh(OEt)2}]BPh4 (1b).  相似文献   

17.
Some new heteroleptic tris-cyclometallated iridium(III) complexes have been synthesized and fully characterized. Among these iridium(III) complexes, bis(1-phenylpyrazolato-N,C2′)iridium(III)[5-(2′-pyridyl)tetrazolate] (3) and bis(3-methyl-1-phenylpyrazolato-N,C2′)iridium(III)[5-(2′-pyridyl)tetrazolate] (4) show excellent quantum yields at room temperature, the electron density being perturbed by introducing the pyridyltetrazole ligand, making kr > knr. This destroys the concept of phenylpyrazole based iridium complexes.  相似文献   

18.
The electrochemical reduction of the complexes [CpNi(PR3)2]+, where R = C2H5, C3H7, C4H9 or [C6Ni,(diphos)]+ and [CpNi(diars)+ in acetonitrile is described and the data are compared with those for the complexes Cp2Ni, [Ni(PR3)4]2+ and Ni(diphos)2+2.  相似文献   

19.
The synthesis of a new class of acylplatinum complexes of composition [Pt(OC6H4CO)LaLb] La = Lb = PR3, P(OR)3, Ph2PCH2CH2PPh2, AsR3; La = 2-picoline, 3-picoline, 4-picoline, 15NH2{CH2}5CH3, Lb = DMSO, is described. The complexes are synthesized from o-hydroxybenzaldehyde (salicylaldehyde) and K2PtCl4 and contain an organic chelating ligand bound to platinum via the phenolic oxygen and the aldehyde carbon. 1H, 13C, 31P and 195Pt NMR data for the new complexes are reported.  相似文献   

20.
A series of substituted triphenylamine-containing organic compounds are synthesized and their hole-transport properties are examined by electrochemical and spectroelectrochemical methods. Several substituted tirphenylamines exhibited irreversible electron-transfer reactions both in the oxidative and reductive scan. On the other hand, the cyclic voltammograms of the p-phenylenediamine series are well defined. N,N-bis(4-nitrophenyl)-N,N-diphenyl-1,4-phenylenediamine (NPD) exhibited two reversible oxidation redox couples at +1.00 and +1.28 V vs. Ag/AgCl in dichloromethane solution. There is one reversible reduction redox couple at −1.12 V and one irreversible wave with Ep,c at −1.87 V. Cyano-substituted p-phenylenediamine (CPD) exhibited similar oxidation redox couples. Amino-substituted p-phenylenediamine (APD) is easier to oxidize than NPD and CPD. APD exhibits two reversible oxidation redox couples at +0.40 and +0.70 V and two extra irreversible oxidation waves at +1.26 and +1.52 V. Optically transparent thin-layer electrode (OTTLE) coupled with UV/Vis/NIR spectroscopy was used to examine the oxidation products of the above reactions. The electrogenerated cation and dication of the substituted p-phenylenediamine are very stable in the spectroelectrochemical studies. Oxidation of the compound APD exhibited a distinguished absorption pattern, which is different from those of compound NPD and compound CPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号