首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
提出了石墨炉原子吸收光谱法同时测定小鼠肝中痕量Pb和Cd的方法。以8-羟基喹啉为络合剂,在pH 9.0时,用Triton X-100浊点萃取富集样品中的Pb和Cd。用NH4H2PO4作为基体改进剂测定Pb和Cd,Pb和Cd的检出限(3s/k)分别为0.103μg/L和0.0136μg/L,相对标准差(n=6)分别为1.4%,0.73%。对于10 mL样品溶液的富集倍数分别为7.1,9.3。利用该法分别测定了小鼠肝中的Pb和Cd的含量,加标回收率分别为96.4%~97.1%和101.3%~103.2%。  相似文献   

2.
建立了石墨炉原子吸收光谱法快速测定血液中铅和镉的方法.使用5% 硝酸溶液对样品进行脱蛋白处理,然后在旋涡混合器上振摇,离心后取上清液在石墨炉原子吸收光谱仪上进行测定.结果表明,Pb、Cd工作曲线线性关系良好,相关系数均大于0.9994;方法检出限分别为4.32μg/L和0.27μg/L;Pb的加标回收率为91.6% ~...  相似文献   

3.
微波消解石墨炉原子吸收光谱法 测定茶叶中铅   总被引:11,自引:0,他引:11  
茶叶中铅含量的测定多采用双硫腙法和原子吸收光谱法。通常茶叶样品的处理方法 (干法 /湿法 )时间长[1] ,劳动强度大 ,且某些元素如铅在高温下易损失。微波消化具有简单、快速、节省试剂、不污染环境、劳动强度低等优点。近几年来 ,该技术已逐渐用于分析测试领域。但多使用高氯酸和硝酸作为消解剂[2 ] 。本文使用硝酸对样品进行微波消解 ,避免了由于采用高氯酸产生氯化物气相干扰 ,磷酸氢二铵作基体改进剂消除原子化信号出现的双峰 ,石墨炉原子吸收光谱法直接进行茶叶中铅的含量测定 ,方法简便快捷 ,分析结果满意。1 试验部分1.1 仪器与试…  相似文献   

4.
提出了石墨炉原子吸收光谱法测定食品添加剂中铅和镉含量的方法。样品用硝酸及过氧化氢作溶剂,使用微波消解的方法处理。以磷酸二氢铵为基体改进剂,铅和镉灰化温度分别为600℃和400℃,原子化温度分别为2 100℃和1 800℃。在优化的试验条件下,测得铅和镉相对标准偏差(n=6)分别为2.8%~6.5%和2.4%~5.3%,7种食品添加剂中铅和镉的回收率在94%~102%和96%~103%之间。  相似文献   

5.
提出了石墨炉原子吸收光谱法测定4种蜂产品中硒、铅和镉的含量.样品用浓硝酸、过氧化氢浸泡后,加热溶解,补加浓硝酸、过氧化氢进行微波消解.在优化的石墨炉工作条件下,用磷酸二氢铵作基体改进剂测定铅和镉,用PdCl2和Mg(NO3)2作混合基体改进剂测定硒.铅、镉和硒的检出限(3S/N)分别为11.3,1.9,3.7 ng,应用此方法分析了4种蜂产品样品,并用标准加入法作回收试验,测得铅、镉、硒的回收率分别为95.4%~103.8%,89.0%~110.0%,86.8%~96.5%之间,相对标准偏差均小于6%.  相似文献   

6.
石墨炉原子吸收光谱法测定蘑菇中的镉、铅   总被引:11,自引:0,他引:11  
马戈  谢文兵  于桂红  朱秀梅 《分析化学》2003,31(9):1109-1111
采用石墨炉原子吸收光谱法测定蘑菇中的镉、铅,以磷酸二氢铵和硝酸镁作混合基体改进剂,提高了测定的灰化温度,消除了基体干扰。方法简便,快速,准确度高。镉和铅的相对标准偏差为3.7%-6.0%和7.3%-7.9%;回收率为98%-106%和98%-104%;检出限为0.009μg/g和0.032μg/g。  相似文献   

7.
悬浮液进样石墨炉原子吸收光谱测定胎贝样品中铅...   总被引:9,自引:0,他引:9  
胡庆兰 《分析化学》1991,19(8):908-910
  相似文献   

8.
石墨炉原子吸收光谱法测定食盐中铅   总被引:8,自引:1,他引:8  
NaCl在铅的吸收灵敏线 2 83.3nm附近有很强烈的分子吸收 ,给原子吸收光谱法测定食盐中微量铅带来了困难。通过不同含量的NaCl溶液对吸光度的干扰程度试验 ,证明在有基体改进剂NH4 H2 PO4存在下 ,NaCl含量在 0~ 10g·L- 1之间对吸光度无影响。将食盐样用HNO3(1+99)稀释 10 0倍后测定 ,获得较为满意结果。本法快速、简便、灵敏度高 ,不需复杂的前处理 ,与化学法比较无显著性差异 (t <t0 .0 5,P >0 .0 5 )。1 试验部分1.1 仪器与试剂AA 680 0原子吸收分光光度计 (日本岛津 )GFA 65 0 0石墨炉控制器ASC 6…  相似文献   

9.
微波消解石墨炉原子吸收光谱法测定番木瓜酱菜中铅   总被引:7,自引:1,他引:7  
研究了微波消解石墨炉原子吸收光谱法测定番木瓜酱菜中铅的最佳条件 ,方法简便快速 ,检出限为 0 .0 6 8mg·kg- 1(换算到样品中的最终浓度 ) ,RSD为 1.4 %~ 9.6 % ,样品加标回收率为97.7%~ 10 0 .3%。  相似文献   

10.
微波增压溶样平台石墨炉原子吸收法测定茶叶中的铅和镉   总被引:5,自引:1,他引:5  
微波增压消解作为样品分解的新技术,由于应用范围广、快速、低污染等优点,已被分析实验室广为应用。但是这种消解方法取样量少、稀释受到测试灵敏度的限制,制得的试液中含酸量很高,一般为10%~20%,有的达40%,给分析测定带来了新的问题。 本文对茶叶的微波增压消解和应用平台石墨炉对茶叶中的铅、镉测定的基体干扰作了一些试验。 1 试验部分 1.1 仪器与试剂 日立Z-8100型偏振塞曼效应原子吸收光谱仪 SSC-200型自动进样器 FR-1型聚四氟乙烯微波增压消解罐,容积70ml  相似文献   

11.
微波消解GF-AAS法测定贝类产品中铅和镉   总被引:3,自引:0,他引:3  
海贝试样用硝酸及过氧化氢消解并采用微波加热,试液中铅和镉用GF-AAS法测定,所得分析结果与常规法相比,具有更好的准确度和精密度[计算得到平均RSD为5.7%(Pd),4.7%(Cd),平均回收率为98.0%(Pb),98.6M(Cd)]。此外,方法的操作更简便、快速。  相似文献   

12.
微波消解ICP-AES法测定玩具塑料中镉   总被引:9,自引:0,他引:9  
采用微波加压消解溶样,ICP-AES法测定玩具塑料中镉含量,选择最佳工作条件,方法简便、快速、可靠。适用于各类玩具塑料中镉含量的分析。  相似文献   

13.
塞曼原子吸收光谱法测定含盐调味品中微量铅   总被引:5,自引:0,他引:5  
以氯化钯—硝酸作基体改进剂,利用塞曼石墨炉原子吸收法光谱法直接测定调味品中微量铅,免去了复杂的前处理过程,消除了氯化钠的背景干扰,提高了检测效率。方法的加标回收率为88.0%~99.0%,相对标准偏差小于5.0%。  相似文献   

14.
应用石墨炉原子吸收光谱(GF-AAS)法测定了苦黄注射液及其生中药材中铅及镉量。试样用浓硝酸及过氧化氢消解。对仪器的工作条件,包括波长、光谱带宽、灰化温度及原子化温度,作了试验和优化。选用柠檬酸作为基体改进剂,对大黄、茵陈、柴胡、苦参及“苦黄”注射液等试样中的铅及镉量作了测定,分析结果的相对标准偏差均小于4.4%。按标准加入法作了回收率试验,测得值在96%~110%之间。  相似文献   

15.
用硝酸和氢氟酸溶解铜合金,用石墨炉原子吸收光谱法直接进行测定。为了消除基体元素及其他共存元素的干扰采用标准加入法进行测定,并对最佳的测量酸度进行讨论。方法用于航空铜舍金中铅的测定,加标回收率为90.5%-113.0%,基本消除干扰,方法简单、快速。  相似文献   

16.
微分电位溶出伏安法同时测定甘草中痕量铅和镉   总被引:2,自引:0,他引:2  
建立了在NH4OAc HOAc介质中,用微分电位溶出伏安法测定中药甘草中痕量铅和镉的方法,利用该法对中药甘草煎煮前后及其煎液中铅和镉的含量进行测定。试验表明,镉和铅分别在-0.66V(vs.SCE)和-0.47V(vs.SCE)电位处形成两个灵敏的二次微分溶出峰;铅在0~0.8mg·L-1,镉在0~0.4mg·L-1范围,峰电流与浓度呈良好的线性关系;铅和镉检出限分别为0.15和0.1μg·L-1,相对标准偏差≤1.39%;铅和镉加标回收率在94%~103%之间。结果表明,该甘草样品中铅和镉含量均低于国家安全标准,甘草煎煮液中铅的浸出率较高,镉的浸出率则较低,方法也适用于其它类似中药。  相似文献   

17.
非过滤法共沉淀富集—火焰原子吸收测定饮水中镉铜铅   总被引:3,自引:0,他引:3  
在中性或弱碱性条件下,向被没水样中加入适量Bi^3+和硫化钠,使水样中Cd^2+,Cu^2+,Pb^2+与Bi^3+一起硫化物(CdS,CuS,PbS)和Bi2S3的共沉淀,加入明矾加速硫化物的沉淀,凝结,然后用虹吸法吸去上层清液(无须过滤),将沉淀物用热稀硝酸溶液,以火焰原子吸收法测定这三个元素的含量。方法简便,实用,且具有较高的准确率和精密度,尤其适于对大体积水样的沉淀富集。  相似文献   

18.
提出了在HCl-Fe  相似文献   

19.
采用微波消解法进行溶样,以ICP-AES法测定塑料中Pb和Cd的含量。Pb、Cd的回收率分别为96.0%~102.0、93.3%~105.0%。Pb、Cd测定结果的相对标准偏差分别为0.567%、1.19%(n=10)。Pb和Cd的检出限分别为0.02、0.005 mg/L。该方法适用于多种塑料中Pb和Cd含量的快速分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号