首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ten complexes of nickel(II) and cobalt(II) witho-phenylenebis(diphenylarsine), (pdpa) ando-phenylenebis(di-p-tolylarsine), (pdta) have been synthesised. The stoichiometry of complexes is markedly dependent upon the reaction temperature, thus reaction atca. 0° gives the M(A-A)2X2 chelates, [M = Ni, X = Br, (A-A) = pdpa; M = Ni, X = I, (A-A) = pdpa, pdta; M = Co, X = CNS, (A-A) = pdpa] whereas at higher temperatures the M(A-A)X2 chelates [M = Ni, X = Br, I, (A-A) = pdpa, pdta; M = Co, X = CNS, (A-A) = pdpa or pdta] are obtained. The Ni(A-A)2I2 compounds can be converted into Ni(A-A)I2 by boiling under reflux in n-BuOH; the conversion can be reversed by cooling a CH2Cl2 solution of the latter at or below 0°. Stereochemical assignments of all the new complexes have been made on the basis of room temperature eff values, molar conductance, i.r. and u.v. data.  相似文献   

2.
Mercury(II) halides react with 1,2-ethylenebisdiphenylphosphine (DPE) and 1,4-butylenebisdiphenylphosphine (DPB) to give two types of complexes having the general formulae, [(diphos)HgX2] and [(diphos)(HgX2)2]. The former seems to possess chain structure, while the latter has probably a bridged structure. In both the cases mercury(II) acquires sp3 tetrahedral configuration.  相似文献   

3.
Ortho-carboxyphenyl-dimethylarsine (CPDMA), ortho-carboxpyhenyldiphenylarsine (CPDPA) and ortho-carboxyphenyldi(p-tolyl)arsine (CPDTA) react with mercury(II) halides to yield complexes having the formula HgX2L where X is Cl, Br or I and L is ligand. In view of infrared spectral data these complexes have been classified into two classes: (a) those in which the carboxyl group of the ligand remains free (ligand being monodentate), and (b) those in which the ligand acts as a bidentate group. The complex Hg(Cl2) · CPDPA is the only example of type (a) and has been assigned a dimeric halogen bridged structure. The remaining eight complexes are assumed to be monomeric. A tetrahedral structure is proposed for all the nine complexes.  相似文献   

4.
Summary The reactions of K2[MX4] (M = PdII or PtII and X = Cl or Br) witho-aminobenzylamine (o-aba) have been studied in neutral aqueous solutions. Two types of complexes were isolated from these studies: [MLX2] and [ML2]X2. Elemental analyses, conductivity measurements, i.r. and visible spectra suggest polymeric structures for [MLX2] with the ligand,o-aba = L, acting as a bridge, and/or mononuclear structures for [ML2]X2.  相似文献   

5.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

6.
Summary Platinum(IV)/platinum(II) chloride and bromide form 1 : 1, 1 : 2 or 3 : 2 (metal: ligand) addition compounds with 1,2-ethylene-, 1,3-propylene-and 1,4-butylene-bisdiphenyl-phosphine sulphide or selenide and 1,6-hexamethylene-bisdiphenylphosphine selenide. The adducts have been characterized by elemental analysis, i.r. and reflectance spectra, and molar conductance data. All adducts have been assigned bridged square planar or octahedral arrangements around platinum(II) or platinum(IV) ions respectively. Both oxidation states of platinum conform to class b behaviour with respect to the soft donor sulphur and selenium atoms of the ligands.Reprints of this article are not available.  相似文献   

7.
Reactions of 3,6-bis(2′-pyridyl)pyridazine derivatives (n-dppn) ¶For the n-dppn ligands, n stands for the size of the cyclic aliphatic ring on positions 4 and 5 of the pyridazine ring, n?=?5, 6, 8, and 12. with MX2(PhCN)2 (M?=?Pd, Pt; X?=?Cl,?Br) have been investigated. The new complexes cis-[PdCl2(n-dppn)] (n?=?5,?6,?8,?12), cis-[PtCl2(n-dppn)]?·?H2O (n?=?5,?6), cis-[PtCl2(8-dppn)] and cis-[PtBr2(5-dppn)] have been characterized by elemental analyses, conductivity measurements, infrared, electronic and 1H-NMR spectra.  相似文献   

8.
9.
10.
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents.  相似文献   

11.
《Polyhedron》1986,5(6):1213-1216
The square planar complexes cis-[MCl2(hypy)], cis-[MCl2(hyqu)], [Pt(hypy)2] [PtCl4], [Pd(hypy)2][ClO4]2 and [Pd(hyqu)2][ClO4]2 (M = Pd or Pt, hypy = 2-hydrazinopyridine, hyqu = 8-hydrazinoquinoline), in which hypy and hyqu act as bidentate chelating ligands, have been prepared and characterized. Complexes containing hyqu do not appear to have been isolated previously.  相似文献   

12.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

13.
Some tetracoordinated complexes having the formulae, [AgL4]X (L = Triphenyl-arsine; X = NO, ClO and BrO) and [AgL3X] (L = Triphenyl-arsine/phosphine; X = SCN? and NCO?) have been prepared and characterised by analyses, conductance, magnetic susceptibility and infra-red spectroscopy.  相似文献   

14.
A series of homoleptic and heteroleptic platinum(ii) complexes [Pt(C[triple bond, length as m-dash]CFc)(2)(L-L)] (L-L = COD , 1,1'-bis(diphenylphosphino)ferrocene (dppf) ), Q(2)[cis/trans-Pt(C(6)F(5))(2)(C[triple bond, length as m-dash]CFc)(2)] (cis, Q = PMePh(3), ; trans, Q = NBu(4), ), (NBu(4))[Pt(bzq)(C[triple bond, length as m-dash]CFc)(2)] (Hbzq = 7,8-benzoquinoline) and (NBu(4))(2)[Pt(C[triple bond, length as m-dash]CFc)(4)] has been synthesized and characterized spectroscopically and the structures of .2CHCl(3), and .2H(2)O.2CH(2)Cl(2) confirmed by single-crystal X-ray studies. The anion of complex , shows strong O-Hpi(C[triple bond, length as m-dash]C) interactions and weaker C-Clpi(C[triple bond, length as m-dash]C) contacts between the protons of two water and two CH(2)Cl(2) molecules and the C(alpha)[triple bond, length as m-dash]C(beta) of mutually cis alkynyl groups. In this complex the presence of additional O-HH-C(Cp) and C-ClH-C(Cp) contacts gives rise to an extended bidimensional network. The optical and electrochemical properties of all derivatives have been examined. It is remarkable that for complexes and a facile oxidatively induced coupling, giving rise to 1,4-diferrocenylbutadiyne, is observed, this also having been proven by chemical oxidation.  相似文献   

15.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

16.
In this review, the synthesis, electronic absorption and luminescent properties of a series of branched alkynylpalladium(II) and -platinum(II) phosphine complexes with different alkynyl backbones and some of their structurally related complexes in the literature will be discussed. With the growing research interest in the potential application of these complexes in the field of non-linear optics (NLO), the two-photon absorption (TPA) properties and the corresponding structure–property relationships of selected luminescent branched platinum(II) bis-alkynyl complexes will also be described.  相似文献   

17.
The reactions of the molybdenum(II) dicarbonyl complexes, [MoBr(π-allyl)(CO)2(L)2] (L = CH3CN, py) and (MoBr(π-allyl)(CO)2(L,L)] (L,L = bipy, phen, dppe) with HgX2 (X = Cl, CN, SCN) give several new complexes via a displacement reaction involving Br or/and L ligands or a simple adduct formation reaction.  相似文献   

18.
A series of palladium(II) and platinum(II) complexes possessing pentafluorophenyl ligands of the general formula [M(L-L)(C6F5)Cl][space](M = Pd 3; L-L=tmeda (N,N,N',N',-tetramethylethylenediamine) a; 1,2-bis(2,6-dimethylphenylimino)ethane) b; dmpe (1,2-bis(dimethylphosphino)ethane) c; dcpe (1,2-bis(dicyclohexylphosphino)ethane) d; Pt ; L-L=tmeda a; 1,2-bis[3,5-bis(trifluoromethyl)phenylimino]-1,2-dimethylethane b; dmpe c; dcpe d) were readily synthesized from the dimer [M(C6F5)(tht)(mu-Cl)2] (M=Pd 1b, Pt 2b; tht=tetrahydrothiophene) and the corresponding bidentate ligand. In the case of palladium, the corresponding iodo analogues (6a-c) were readily synthesized in a one-pot reaction from [Pd2(dba)3], iodopentafluorobenzene, and the appropriate ligand. The platinum complexes 4c-d were then converted to the water complexes [Pt(L-L)(C6F5)(OH2)]OTf (L-L =dmpe 7a; dcpe 7b)via reaction with AgOTf in the presence of water. Attempts to convert the palladium complexes 3c-d to the corresponding water complexes resulted in the disproportionation of the intermediate water complex to form [Pd(L-L)(C6F5)2] (L-L=dmpe 8) or [Pd(L-L)2][OTf]2(L-L=dcpe 9). Upon standing in solution for prolonged periods, complex 7a undergoes an identical disproportionation reaction to the Pd analogues to form [Pt(L-L)(C6F5)2] (L-L=dmpe 10). Complexes 4c and 4d were converted to the corresponding hydrides (11b-c, respectively) using two different hydride sources: 11a was formed by the reaction of with NaBH4 in refluxing THF, while 11b was synthesized in near quantitative yield using [Cp2ZrH2] in refluxing THF. Attempts to synthesize eta2-tetrafluorobenzyne complexes [Pt(L-L)(C6F4)] (L-L=dmpe, dcpe) from reaction of 11a-b with butyllithium were unsuccessful. The molecular structures of 3a,4a, 4c, 4d, 6b, 7a, 8, 11b and have been determined by X-ray crystallographic studies, and are discussed.  相似文献   

19.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

20.
Summary The general course of reactions between [MCl4 ]2– (M = Pd, Pt) and primary and secondary phosphines containing phenyl, cyclohexyl, or 2-cyanoethyl groups, in polar solvents, is to yield L3MCl2 complexes which are probably ionic [L3MCl]+Cl These compounds can be isolated and characterized in the solid state, but in solution they are labile, and tend to react to give phosphines plus L2 MCI2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号